Structure of rat aortic baroreceptors and their relationship to connective tissue. 1979

J M Krauhs

The ultrastructure of fibres and sensory terminals of the aortic nerve innervating the aorta between the left common carotid and left subclavian arteries was investigated in the rat. This is the region from which most baroreceptor responses are recorded electrophysiologically. The fibres of the aortic nerve enter the adventitia and separate into bundles generally containing one myelinated fibre and four or five unmyelinated fibres of various sizes. The bundles pursue a roughly helical course through the adventitia; when they are close to the aortic media, the myelinated fibre loses its myelin sheath. A complex sensory terminal region is formed, as both the unmyelinated and 'premyelinated' axons become irregularly varicose. The concentration of mitochondria becomes very dense and cytoplasmic deposits of glycogen are observed. Both unmyelinated and premyelinated axons branch, and the unmyelinated axons wind irregularly around the premyelinated axon. The latter may have several loops and small holes. The terminal regions of both types of axon contain clusters of clear 40 nm vesicles. Part of the surface of each terminal region is ensheathed by Schwann cells, but the rest of the axolemma is directly exposed to extracellular connective tissue. There are often several layers of basal lamina around the sensory terminals and parts of the axolemma and Schwann cell membranes are attached to it by fine fibrillar material. The basal laminae are also attached to fibroblasts, fibroblast-like perineurial cells and elastic laminae, and the whole cellular and extracellular system appears to be tightly bound together. No differences between baroreceptors of spontaneously hypertensive and normal rats were found.

UI MeSH Term Description Entries
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D011311 Pressoreceptors Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls. Baroreceptors,Receptors, Stretch, Arterial,Receptors, Stretch, Vascular,Stretch Receptors, Arterial,Stretch Receptors, Vascular,Arterial Stretch Receptor,Arterial Stretch Receptors,Baroreceptor,Pressoreceptor,Receptor, Arterial Stretch,Receptor, Vascular Stretch,Receptors, Arterial Stretch,Receptors, Vascular Stretch,Stretch Receptor, Arterial,Stretch Receptor, Vascular,Vascular Stretch Receptor,Vascular Stretch Receptors
D003238 Connective Tissue Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX. Connective Tissues,Tissue, Connective,Tissues, Connective
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J M Krauhs
January 1975, Acta Universitatis Carolinae. Medica. Monographia,
J M Krauhs
May 1992, The American journal of physiology,
J M Krauhs
December 1979, Developmental medicine and child neurology,
J M Krauhs
April 1982, The American journal of physiology,
J M Krauhs
January 1989, Postepy higieny i medycyny doswiadczalnej,
J M Krauhs
January 1992, Circulation research,
Copied contents to your clipboard!