Propagation of electrical spiking activity along the small intestine: intrinsic versus extrinsic neural influences. 1979

L Bueno, and F Praddaude, and Y Ruckebusch

1. The electrical activity of the small intestine of conscious dog, recorded by means of chronically implanted electrodes, was related to the transit time estimated by phenol red infusion and its propagation observed after a single or double transection and following either isolation or removal of a 50 cm jejunal loop. 2. In the fasted dog, the activity was characterized by the propagation of myoelectric complexes at a velocity of 4 cm/min during which the mean transit time averaged 13 min/m. About 2/3 of these complexes were seen to pass beyond a single section and anastomosis of the jejunum with a delay of 15 min. This number was reduced to 1/3 and the delay doubled when a second section was performed 50 cm distally. 3. In dog with an isolated jejunal loop, most of the myo-electric complexes were seen to pass from the proximal intestine to the loop and then to the intestine beyond the sit of anastomosis within 37 min. Some complexes however passed directly through the anastomosis within 30-32 min, affecting or not the loop. Others started on the loop and/or on the intestine beyond the anastomosis. Finally, the total number of complexes recorded on the distal jejunum was greater than on the duodenum, an effect which disappeared after removal of the isolated loop. 4. The propagation of the complexes occurred at a lower velocity after denervation of a jejunal segment in situ but was arrested in the case of an isolated-denervated jejunal loop. 5. It is concluded that continuity of structures in the bowel is essential for the propagation of a myo-electric complex which is stopped and replaced by another complex at the level of an anastomosis, the number os complexes reorganized beyond an anastomosis and their velocity of propagation depending upon both intrinsic and extrinsic neural influences.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

L Bueno, and F Praddaude, and Y Ruckebusch
December 1972, The Journal of physiology,
L Bueno, and F Praddaude, and Y Ruckebusch
June 1964, Archives of surgery (Chicago, Ill. : 1960),
L Bueno, and F Praddaude, and Y Ruckebusch
January 2007, Biological cybernetics,
L Bueno, and F Praddaude, and Y Ruckebusch
May 1982, Infection and immunity,
L Bueno, and F Praddaude, and Y Ruckebusch
May 2015, Development and psychopathology,
L Bueno, and F Praddaude, and Y Ruckebusch
June 1975, Gastroenterology,
L Bueno, and F Praddaude, and Y Ruckebusch
January 1996, Journal of physiology, Paris,
L Bueno, and F Praddaude, and Y Ruckebusch
February 2015, Acta physiologica (Oxford, England),
L Bueno, and F Praddaude, and Y Ruckebusch
September 1959, Gastroenterology,
L Bueno, and F Praddaude, and Y Ruckebusch
May 1990, The American journal of physiology,
Copied contents to your clipboard!