Physiological basis of transient repression of catabolic enzymes in Escherichia coli. 1970

B Tyler, and B Magasanik

Transient repression of catabolic enzymes occurs in cells that encounter a new carbon compound in their growth medium, but only when the cells contain the enzyme catalyzing the transfer of phosphate from phosphoenolpyruvate to a small heat-stable protein (HPr), as well as a permease capable of transporting the new compound across the cell membrane. The newly added compound need not be metabolized. The degree and duration of the transient repression have no obvious relation to the intracellular level of the exogenously added compound. It is suggested that the actual passage of the compound through the cell membrane is responsible for the repression.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004794 Enzyme Repression The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. Repression, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose

Related Publications

B Tyler, and B Magasanik
January 1977, Journal of supramolecular structure,
B Tyler, and B Magasanik
March 1966, Journal of bacteriology,
B Tyler, and B Magasanik
July 1970, Biochemical and biophysical research communications,
B Tyler, and B Magasanik
January 1980, Folia microbiologica,
B Tyler, and B Magasanik
December 1972, Journal of biochemistry,
B Tyler, and B Magasanik
January 1975, Biochemical and biophysical research communications,
B Tyler, and B Magasanik
January 1986, Nauchnye doklady vysshei shkoly. Biologicheskie nauki,
B Tyler, and B Magasanik
November 1963, The Biochemical journal,
B Tyler, and B Magasanik
February 1992, Research in microbiology,
Copied contents to your clipboard!