Structure-activity relationships in glucocorticoids. 1979

M E Wolff

Meaningful answers to the question of the relationship between glucocorticoid structure and activity have emerged. Structural change has predictable effects on susceptibility to the action of metabolizing enzymes, on receptor affinity, and on intrinsic activity. These effects are, in principle, amenable to mathematical modeling techniques. The fascinating possibility of being able to calculate receptor affinity directly from chemical structure has already been realized through the development of an equation [19] that allows the calculation of receptor binding of any glucocorticoid from structural parameters. Utilizing knowledge of the free energy contributions of the substituents and the hydrophobicity and A-ring conformation of the steroids, receptor affinity for a large number of compounds could be described in terms of four parameters. A general relationship was derived relating the equilibrium dissociation constant to a surface area term, a polar interaction term, and A-ring tilt term, and a size limitation function for the 9 alpha-substituent. The excellent correlation obtained suggests that these four factors are the major determinants of glucocorticoid receptor interactions. It is clear that the use of a mathematical relationship that defines the strength of steroid-receptor interaction is a valuable tool for investigating structure-activity relationships. This would be especially true in the design of steroid drugs. The use of a linear free-energy equation is superior to the assumption of substituent additivity in predicting binding affinities. This type of relationship will be useful in the preparation of steroids for use in affinity labeling studies and should be adaptable to other binding systems in which it is desirable to obtain synthetic analogs for more potent activity or specificity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012709 Serum Albumin A major protein in the BLOOD. It is important in maintaining the colloidal osmotic pressure and transporting large organic molecules. Plasma Albumin,Albumin, Serum
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014156 Transcortin A serpin family member that binds to and transports GLUCOCORTICOIDS in the BLOOD. Corticosteroid-Binding Globulin,Serpin A6,Corticosteroid Binding Globulin

Related Publications

M E Wolff
January 1968, Federation proceedings,
M E Wolff
September 1984, Environmental science & technology,
M E Wolff
August 1958, The Journal of pharmacy and pharmacology,
M E Wolff
January 1981, Progress in clinical and biological research,
M E Wolff
January 1964, Federation proceedings,
M E Wolff
December 2006, Bioorganic & medicinal chemistry,
M E Wolff
January 1972, Advances in applied microbiology,
M E Wolff
June 1986, Pharmacological reviews,
Copied contents to your clipboard!