The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli. 1971

J E Midgley, and W J Gray

The rate of polymerization of ribosomal ribonucleic acid chains was estimated for steadily growing cultures of Escherichia coli M.R.E.600, from the kinetics of incorporation of exogenous [5-(3)H]uracil into completed 23S rRNA molecules. The analytical method of Avery & Midgley (1971) was used. Measurements were made at 37 degrees C, in the presence or the absence of chloramphenicol, in each of three media; enriched broth, glucose-salts or sodium lactate-salts. The rate of chain elongation of 23S rRNA was virtually constant in all media at 37 degrees C, as 24+/-4 nucleotides added/s. Accelerations in the rate of biosynthesis of rRNA by chloramphenicol in growth-limiting media are due primarily to an increase in the rate of initiation of new RNA chains, up to the rates existing in cultures growing rapidly in broth. Thus, in poorer media, only a small fraction of the available DNA-dependent RNA polymerase molecules are active at any given instant, since the chain-initiation rate is limiting in these conditions. In cultures growing rapidly in enriched broth, antibiotic inhibition caused a rise of some 12% in the rate of incorporation of exogenous uracil into total RNA. This small acceleration was due entirely to the partial stabilization of the mRNA fraction, which accumulated as 14% of the RNA formed after the addition of chloramphenicol. In cultures growing more slowly in glucose-salts or lactate-salts media, chloramphenicol caused an immediate acceleration of two- to three-fold in the overall rate of RNA synthesis. Studies by DNA-RNA hybridization showed that the synthesis of mRNA was accelerated in harmony with the other affected species. However, just over half the mRNA formed after the addition of chloramphenicol quickly decayed to acid-soluble products, whereas the remainder was more stable and accumulated in the cells. The mRNA fraction constituted about 6% of the total cellular RNA after 3h inhibition. A model was suggested to explain the partial stabilization and accumulation of the mRNA fraction and the acceleration in the rate of synthesis of mRNA when chloramphenicol was added to cultures in growth-limiting media.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S

Related Publications

J E Midgley, and W J Gray
May 1969, Journal of bacteriology,
J E Midgley, and W J Gray
October 1961, Biochimica et biophysica acta,
J E Midgley, and W J Gray
January 1971, The Journal of biological chemistry,
Copied contents to your clipboard!