T-even bacteriophage-tolerant mutants of Escherichia coli B. II. Nucleic acid metabolism. 1971

C K Mathews, and M J Hewlett

T-even bacteriophage-tolerant mutants are strains of Escherichia coli which can adsorb T-even phages but cannot support the growth of infective virus. Under some conditions, the infected cells are not killed. Mutant cells infected by phage T6 are able to carry out several metabolic functions associated with normal virus development, including arrest of bacterial nucleic acid and protein synthesis, incorporation of isotopic precursors into viral nucleic acids and proteins, synthesis of early enzymes of deoxyribonucleic acid (DNA) metabolism, formation of rapidly sedimenting DNA intermediates, and formation of normal levels of early and late messenger ribonucleic acid species. Phage are unable to mutate to forms capable of growth on these mutants. The nature of the biochemical alteration leading to tolerance is still unknown.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA

Related Publications

C K Mathews, and M J Hewlett
July 1976, Journal of bacteriology,
C K Mathews, and M J Hewlett
January 1949, The Biochemical journal,
C K Mathews, and M J Hewlett
December 1971, Journal of virology,
C K Mathews, and M J Hewlett
March 1945, Genetics,
C K Mathews, and M J Hewlett
July 1959, Journal of bacteriology,
C K Mathews, and M J Hewlett
March 1976, Journal of bacteriology,
Copied contents to your clipboard!