Fracture faces in the cell envelope of Escherichia coli. 1971

A P van Gool, and N Nanninga

Freeze-fracturing of Escherichia coli cells in the presence of 30% (v/v) glycerol resulted in a double cleavage of the cell envelope exposing two convex and two concave fracture faces ([Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text]) with characteristic patterns. Complementary replicas revealed the relationship of the fracture faces to their corresponding fracture planes. The inner fracture plane splits the plasma membrane at one particular level. Apparently the outer fracture plane was located in the outer part of the wall, as it was separated by a layer ([Formula: see text]) from the fractured profile (CW1) presumably corresponding to the murein layer. The outer fracture plane did alternate toward the cell periphery, exposing complementary smooth areas ([Formula: see text] and [Formula: see text]). When cells were freeze-fractured in the absence of glycerol, the outer cell surface appeared as an etching face rather than a fracture face. A schematic representation of the relative location of the different fracture faces in the E. coli cell envelope is given.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005613 Freeze Etching A replica technique in which cells are frozen to a very low temperature and cracked with a knife blade to expose the interior surfaces of the cells or cell membranes. The cracked cell surfaces are then freeze-dried to expose their constituents. The surfaces are now ready for shadowing to be viewed using an electron microscope. This method differs from freeze-fracturing in that no cryoprotectant is used and, thus, allows for the sublimation of water during the freeze-drying process to etch the surfaces. Etching, Freeze
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting

Related Publications

A P van Gool, and N Nanninga
January 1985, Biochimie,
A P van Gool, and N Nanninga
October 2005, The Journal of biological chemistry,
A P van Gool, and N Nanninga
July 2016, Nature microbiology,
A P van Gool, and N Nanninga
December 2018, Biochimica et biophysica acta. Biomembranes,
A P van Gool, and N Nanninga
July 1973, Proceedings of the National Academy of Sciences of the United States of America,
A P van Gool, and N Nanninga
August 1986, Journal of bacteriology,
A P van Gool, and N Nanninga
November 2023, Proceedings of the National Academy of Sciences of the United States of America,
A P van Gool, and N Nanninga
January 2003, Amino acids,
A P van Gool, and N Nanninga
April 2005, Current opinion in microbiology,
A P van Gool, and N Nanninga
January 1982, Annual review of microbiology,
Copied contents to your clipboard!