Growth of Escherichia coli on short-chain fatty acids: growth characteristics of mutants. 1971

J P Salanitro, and W S Wegener

The parent Escherichia coli K-12 is constitutive for the enzymes of the glyoxylate bypass and adapts to growth on long-chain fatty acids (C(12) to C(18)). It does not utilize medium-chain (C(6) to C(11)) or short-chain (C(4), C(5)) n-monocarboxylic acids. Several mutants of this strain which grow using short- or medium-chain acids, or both, as the sole carbon source were selected and characterized. One mutant (D(1)) synthesizes the beta-oxidation enzymes constitutively and grows on medium-chain but not on short-chain acids. A second (N(3)) is partially derepressed for synthesis of these enzymes and grows both on medium-chain and on short-chain acids. Secondary mutants (N(3)V(-), N(3)B(-), N(3)OL(-)) were derived from N(3). N(3)V(-) grows on even-chain but not on odd-chain acids and exhibits a lesion in propionate oxidation. N(3)B(-) grows on odd-chain but not on even-chain acids and exhibits no crotonase activity as assayed by hydration of crotonyl-CoA. N(3)OL(-) grows on acetate and propionate but does not utilize fatty acids C(4) to C(18); it exhibits multiple deficiencies in the beta-oxidation pathway. Growth on acetate of N(3), but not of the parent strain, is inhibited by 4-pentenoate. Revertants of N(3) which are resistant to growth inhibition by 4-pentenoate (N(3)PR) exhibit loss of ability to grow on short-chain acids but retain the ability to grow on medium-chain and long-chain acids. The growth characteristics of these mutants suggest that in order to grow at the expense of butyrate and valerate, E. coli must be (i) derepressed for synthesis of the beta-oxidation enzymes and (ii) derepressed for synthesis of a short-chain fatty acid uptake system.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D003436 Croton Oil Viscous, nauseating oil obtained from the shrub Croton tiglium (Euphorbaceae). It is a vesicant and skin irritant used as pharmacologic standard for skin inflammation and allergy and causes skin cancer. It was formerly used as an emetic and cathartic with frequent mortality. Oil, Croton
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J P Salanitro, and W S Wegener
January 1972, Revista latinoamericana de microbiologia,
J P Salanitro, and W S Wegener
July 2014, Microbiology (Reading, England),
J P Salanitro, and W S Wegener
September 2013, Applied microbiology and biotechnology,
J P Salanitro, and W S Wegener
February 1999, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
J P Salanitro, and W S Wegener
July 2020, Antibiotics (Basel, Switzerland),
J P Salanitro, and W S Wegener
June 2015, Journal of proteomics,
J P Salanitro, and W S Wegener
September 1971, European journal of biochemistry,
J P Salanitro, and W S Wegener
January 1990, The Journal of applied bacteriology,
Copied contents to your clipboard!