Human color vision and color blindness. 1965

G Wald, and P K Brown

UI MeSH Term Description Entries
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D003117 Color Vision Defects Defects of color vision are mainly hereditary traits but can be secondary to acquired or developmental abnormalities in the CONES (RETINA). Severity of hereditary defects of color vision depends on the degree of mutation of the ROD OPSINS genes (on X CHROMOSOME and CHROMOSOME 3) that code the photopigments for red, green and blue. Achromatopsia,Color Blindness,Monochromatopsia,Color Blindness, Acquired,Color Blindness, Blue,Color Blindness, Green,Color Blindness, Inherited,Color Blindness, Red,Color Blindness, Red-Green,Color Vision Deficiency,Deutan Defect,Protan Defect,Tritan Defect,Achromatopsias,Acquired Color Blindness,Blindness, Color,Blue Color Blindness,Color Blindness, Red Green,Color Vision Defect,Color Vision Deficiencies,Defect, Color Vision,Defect, Deutan,Defects, Color Vision,Deficiencies, Color Vision,Deficiency, Color Vision,Green Color Blindness,Inherited Color Blindness,Red Color Blindness,Red-Green Color Blindness,Vision Defect, Color,Vision Defects, Color,Vision Deficiencies, Color,Vision Deficiency, Color
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D005826 Genetics, Medical A subdiscipline of human genetics which entails the reliable prediction of certain human disorders as a function of the lineage and/or genetic makeup of an individual or of any two parents or potential parents. Medical Genetics
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

G Wald, and P K Brown
June 1890, Science (New York, N.Y.),
G Wald, and P K Brown
April 1950, Experientia,
G Wald, and P K Brown
November 1988, Trends in genetics : TIG,
G Wald, and P K Brown
November 1946, Medizinische Klinik,
G Wald, and P K Brown
April 1948, Medizinische Klinik,
G Wald, and P K Brown
March 1947, Optical journal and review of optometry,
G Wald, and P K Brown
October 1946, Journal of the Optical Society of America,
Copied contents to your clipboard!