Enzyme-induced formation of spheres from cells and envelopes of Escherichia coli. 1967

G Weinbaum, and R Rich, and D A Fischman

Normal and filamentous whole cells and isolated envelopes of Escherichia coli B were exposed to various enzymatic treatments to remove surface layers and to characterize the component(s) conferring rigidity in this organism. Modification of cell rigidity was determined by sphere formation in both whole cells and isolated envelopes. Enzymes capable of converting trypsinized normal or untreated filamentous whole cells and untreated envelopes to spheres included: lysozyme plus ethylenediaminetetraacetic acid, clostridial phospholipase C, and phospholipase D from cabbage. These data suggest that there are at least two components essential for maintenance of cell rigidity in E. coli B. The first is the peptidoglycan (mucopeptide), which is susceptible to lysozyme. The second is a phospholipid which is either covalently linked to the mucopeptide or in close association with it. This phospholipase C-sensitive component is protected more completely in normal than in filamentous whole cells by a protein layer which is easily modified by trypsin treatment to allow enzymatically induced sphere formation to occur.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D010194 Pancreatin A mammalian pancreatic extract composed of enzymes with protease, amylase and lipase activities. It is used as a digestant in pancreatic malfunction. Panteric,Panzytrat
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D011523 Protoplasts The protoplasm and plasma membrane of plant, fungal, bacterial or archaeon cells without the CELL WALL. Protoplast
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

G Weinbaum, and R Rich, and D A Fischman
June 1986, Journal of molecular biology,
G Weinbaum, and R Rich, and D A Fischman
January 1959, Biochimica et biophysica acta,
G Weinbaum, and R Rich, and D A Fischman
September 1957, The Journal of biological chemistry,
G Weinbaum, and R Rich, and D A Fischman
May 1977, Photochemistry and photobiology,
G Weinbaum, and R Rich, and D A Fischman
September 1975, Biochimica et biophysica acta,
G Weinbaum, and R Rich, and D A Fischman
December 1977, Antimicrobial agents and chemotherapy,
G Weinbaum, and R Rich, and D A Fischman
May 1956, Canadian journal of biochemistry and physiology,
G Weinbaum, and R Rich, and D A Fischman
January 1957, Science (New York, N.Y.),
G Weinbaum, and R Rich, and D A Fischman
June 1976, Virology,
G Weinbaum, and R Rich, and D A Fischman
January 1979, European journal of biochemistry,
Copied contents to your clipboard!