Nature of the carrier state of bacteriophage SP-10 in Bacillus subtilis. 1968

M Kawakami, and O E Landman

Although the association of phage SP-10 with Bacillus subtilis W-23-S(r) persists in heat- and antiserum-resistant form through the spore stage, it is unstable in vegetative cells and frequently terminates in loss of the carried phage or in lysis. On low-tonicity media, the plating efficiency of carrier cells is low. However, high concentrations of succinate or sucrose or a slowed growth rate preserve viability: on 0.48 m succinate-agar, the viable count per optical density unit is the same as that of a noncarrier control culture. Carrier clones retain phage on 0.48 m succinate-agar. At higher succinate levels, many colonies emerge free of phage; at 1 m succinate, all are cured, probably because high succinate inhibits reinfection. Growth of carrier cells in liquid medium with antiphage serum results in rapid curing; events in such cultures with and without succinate were studied quantitatively by tracing the emergence of sensitive cells, the multiplication and induction of carrier cells, and the sensitivity of carrier cells to superinfection with virulent phage. During log phase, 40 to 70% of the carrier cells became sensitive to virulent phage, although the same cells were insensitive during lag and stationary phase. Apparently, fluctuations in repressor levels are responsible. Spontaneous induction of carrier cells followed a qualitatively similar pattern, perhaps in response to changes in level of the same repressor. Production of sensitive segregants by carrier followed a different course, presumably because the repressor does not affect segregation. Many sensitive cells were found two to three divisions after inoculation in antiserum medium. This suggests that each inoculum cell contained one or only a few phage replicons. The data are compatible with the idea that the carrier state in media without antisera is maintained entirely by reinfection and without replication of phage in the latent state. Alternative models which involve replication of latent phage are not ruled out, however.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005827 Genetics, Microbial A subdiscipline of genetics which deals with the genetic mechanisms and processes of microorganisms. Microbial Genetics,Genetic, Microbial,Microbial Genetic
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001433 Bacteriolysis Rupture of bacterial cells due to mechanical force, chemical action, or the lytic growth of BACTERIOPHAGES. Bacteriolyses
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D013170 Spores The reproductive elements of lower organisms, such as BACTERIA; FUNGI; and cryptogamic plants. Spore
D013386 Succinates Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure. Succinic Acids,Acids, Succinic

Related Publications

M Kawakami, and O E Landman
January 1977, Journal of virology,
M Kawakami, and O E Landman
July 1985, Journal of virology,
M Kawakami, and O E Landman
November 1973, Journal of virology,
M Kawakami, and O E Landman
June 1966, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Kawakami, and O E Landman
December 1979, Canadian journal of microbiology,
M Kawakami, and O E Landman
April 1974, Journal of virology,
Copied contents to your clipboard!