Fine structural studies of the permeability of octopus microvasculature to macromolecules. 1979

J Browning, and J R Casley-Smith

UI MeSH Term Description Entries
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009417 Nerve Tissue Differentiated tissue of the central nervous system composed of NERVE CELLS, fibers, DENDRITES, and specialized supporting cells. Nervous Tissue,Nerve Tissues,Nervous Tissues,Tissue, Nerve,Tissue, Nervous,Tissues, Nerve,Tissues, Nervous
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D049831 Octopodiformes A superorder in the class CEPHALOPODA, consisting of the orders Octopoda (octopus) with over 200 species and Vampyromorpha with a single species. The latter is a phylogenetic relic but holds the key to the origins of Octopoda. Octopoda,Octopus,Octopuses,Octopodas,Octopodiforme,Octopuse

Related Publications

J Browning, and J R Casley-Smith
January 1979, Tissue & cell,
J Browning, and J R Casley-Smith
June 1968, Nordisk medicin,
J Browning, and J R Casley-Smith
November 1955, Circulation research,
J Browning, and J R Casley-Smith
October 1973, Archiv fur klinische und experimentelle Ohren- Nasen- und Kehlkopfheilkunde,
J Browning, and J R Casley-Smith
December 1985, Journal of pharmacological methods,
J Browning, and J R Casley-Smith
June 1987, Federation proceedings,
J Browning, and J R Casley-Smith
January 1968, Journal d'urologie et de nephrologie,
J Browning, and J R Casley-Smith
October 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J Browning, and J R Casley-Smith
May 1965, The Journal of cell biology,
Copied contents to your clipboard!