Organisation of inverted repeat sequences in hamster cell nuclear DNA. 1979

N Hardman, and A J Bell, and A McLachlan

Hamster cell nuclear DNA is shown to contain inverted repeat (foldback) sequences, in some respects similar to the foldback fraction in DNA from other animal cell types. Using electron microscopy the majority of foldback duplexes are shown to be located in simple hairpin-like DNA structures, formed from individual pairs of complementary inverted repeated sequences 50--1000 nucleotides in length, in some cases arranged in tandem, and in other cases separated by intervening sequences, up to 16000 nucleotide residues long. In addition, a novel class of foldback structure, referred to as 'bubbled hairpins' is reported, which appear to be formed from clusters of inverted repeat sequences that are separated from adjacent clusters of complementary inverted repeats by large intervening sequences which vary in length from 5000 to over 20000 nucleotide residues. Due to the special pattern of distribution of these latter inverted repeat sequences, 'bubbled hairpins' are observed only in long foldback DNA. Evidence is presented that the distribution of foldback sequences in hamster cell DNA is highly ordered. The lengths of the intervening single chains in foldback structures appear to vary non-randomly. This gives rise to a localised periodic pattern of organisation that is believed to be a consequence of regular alternating arrangements of foldback and non-foldback sequences in the segments of DNA from which foldback structures are derived.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

N Hardman, and A J Bell, and A McLachlan
February 1979, European journal of biochemistry,
N Hardman, and A J Bell, and A McLachlan
December 1979, Proceedings of the National Academy of Sciences of the United States of America,
N Hardman, and A J Bell, and A McLachlan
January 1976, Genetics,
N Hardman, and A J Bell, and A McLachlan
October 1980, Nucleic acids research,
N Hardman, and A J Bell, and A McLachlan
January 1977, Biochemical Society transactions,
N Hardman, and A J Bell, and A McLachlan
February 2006, Biochemistry,
N Hardman, and A J Bell, and A McLachlan
March 1982, Biopolymers,
N Hardman, and A J Bell, and A McLachlan
March 1978, Nucleic acids research,
N Hardman, and A J Bell, and A McLachlan
September 1986, European journal of biochemistry,
N Hardman, and A J Bell, and A McLachlan
July 1978, Nucleic acids research,
Copied contents to your clipboard!