Cow red blood cells. III. Postnatal adaptation of energy metabolism in the calf red blood cells. 1979

H D Kim

1. The change in energy metabolism of red blood cells from the newborn calf to adult cow was examined utilizing a number of metabolic substrates including glyceraldehyde, dihydroxyacetone, ribose, glucose, adenosine and inosine. 2. All of these substrates are utilizes by the newborn calf cells to a varying degree. With glyceraldehyde, dihydroxyacetone or glucose as a substrate, lactate is formed at a rate of 2-3 mumol/ml cells per h. As in other species, ribose utilization depends on substrate concentration, with an optimum of 3 mM ribose yielding lactate 1-1.5 mumol/ml cells per h in the calf cells. 3. In sharp contrast, adult cow red blood cells lost the bulk of the postnatal metabolic substrate affinities except for glyceraldehyde and glucose which are consumed at less than half of the rate at birth. 4. While the transition of the metabolic properties from the newborn to the adult state takes place within 2 to 3 months after birth, the red blood cells produced shortly after birth have already assumed the metabolic machinery characteristic to the adult cells. 5. Even though adenosine in itself is a poor substrate in producing lactate, a net synthesis of ATP from adenosine can take place in both calf and cow cells provided that an alternate carbon source such as glyceraldehyde, dihydroxyacetone or glucose is given. 6. Of the test substrates, glucose is the only substrate for the adult cow cells exhibiting a greater than 50% increase in utilization by exogenously added adenine. By contrast, the calf cell is affected to a much lesser extent. The possible in vivo regulatory metabolic role of certain purine and pyrimidine compounds unique to the adult stage of this species is discussed.

UI MeSH Term Description Entries
D007288 Inosine A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed)
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004098 Dihydroxyacetone A ketotriose compound. Its addition to blood preservation solutions results in better maintenance of 2,3-diphosphoglycerate levels during storage. It is readily phosphorylated to dihydroxyacetone phosphate by triokinase in erythrocytes. In combination with naphthoquinones it acts as a sunscreening agent. 1,3-Dihydroxy-2-Propanone,Chromelin,Vitadye,1,3 Dihydroxy 2 Propanone
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005260 Female Females
D005985 Glyceraldehyde An aldotriose containing the propionaldehyde structure with hydroxy groups at the 2- and 3-positions. It is involved in the formation of ADVANCED GLYCOSYLATION END PRODUCTS.
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof

Related Publications

H D Kim
January 1983, Biomedica biochimica acta,
H D Kim
August 1994, The Journal of experimental biology,
H D Kim
July 1965, The Indian veterinary journal,
H D Kim
January 1979, Acta physiologica Academiae Scientiarum Hungaricae,
H D Kim
January 1980, Acta physiologica Academiae Scientiarum Hungaricae,
H D Kim
July 2002, Nihon rinsho. Japanese journal of clinical medicine,
H D Kim
January 1962, Folia haematologica (Leipzig, Germany : 1928),
Copied contents to your clipboard!