Quantitative traits measured in human families can be analyzed to partition the total population variance into genetic and environmental components, or to elucidate the genetic mechanism involved. We review the estimation of variance components directly from human pedigree data, or in the form of path coefficients from correlations between pairs of relatives. To elucidate genetic mechanisms, a mixed model that allows for segregation at a major locus, a polygenic effect and a sibling environmental correlation is described for nuclear families. In each case appropriate likelihoods are derived as a basis, using numerical maximum likelihood methods, for parameter estimation and hypothesis testing. A general model is then described that allows for several familial sources of environmental variation, assortative mating, and both major gene and polygenic effects; and an algorithm for calculating the likelihood of a pedigree under this model is indicated. Finally, some of the remaining problems in this area of biometric analysis are pointed out.