Menaquinone (vitamin K2) biosynthesis: conversion of o-succinylbenzoic acid to 1,4-dihydroxy-2-naphthoic acid by Mycobacterium phlei enzymes. 1979

R Meganathan, and R Bentley

The coenzyme A (CoA) and adenosine 5'-triphosphate-dependent conversion of o-succinylbenzoic acid (4-[2'-carboxyphenyl]-4-oxobutyric acid) to 1,4-dihydroxy-2-naphthoic acids is an important step in menaquinone (vitamin K2) biosynthesis. Cell-free extracts catalyzing this conversion, obtained from Mycobacterium phlei, were separated into three protein fractions by treatment with protamine sulfate. The second fraction (fraction B) and the supernatant (fraction S) alone did not catalyze dihydroxynaphthoate formation, but did so in combination. All of the results were consistent with the formation of an unstable intermediate, likely an o-succinylbenzoyl-CoA compound, by the action of fraction S. Adenosine 5'-triphosphate was required in this reaction and adenosine 5'-monophosphate was formed. This enzyme activity was termed o-succinylbenzoyl-CoA synthetase: the enzyme showed a marked stability to 0.1 N hydrochloric acid. The presumed o-succinylbenzoyl-CoA derivate was rather unstable; under a variety of conditions, it was converted to a spirodilactone form of o-succinylbenzoate. Fraction B contained an enzyme, termed naphthoate synthase, which converted the o-succinylbenzoyl-CoA derivative to 1,4-dihydroxy-2-naphthoate.

UI MeSH Term Description Entries
D009161 Mycobacterium A genus of gram-positive, aerobic bacteria. Most species are free-living in soil and water, but the major habitat for some is the diseased tissue of warm-blooded hosts. Mycobacteria
D009168 Mycobacterium phlei A saprophytic bacterium widely distributed in soil and dust and on plants.
D010654 Phenylbutyrates Derivatives of 4-phenylbutyric acid, including its salts and esters.
D003066 Coenzyme A Ligases Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A
D006836 Hydro-Lyases Enzymes that catalyze the breakage of a carbon-oxygen bond leading to unsaturated products via the removal of water. EC 4.2.1. Dehydratase,Dehydratases,Hydrase,Hydrases,Hydro Lyase,Hydro-Lyase,Hydro Lyases,Lyase, Hydro,Lyases, Hydro
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013389 Succinate-CoA Ligases Enzymes that catalyze the first step leading to the oxidation of succinic acid by the reversible formation of succinyl-CoA from succinate and CoA with the concomitant cleavage of ATP to ADP (EC 6.2.1.5) or GTP to GDP (EC 6.2.1.4) and orthophosphate. Itaconate can act instead of succinate and ITP instead of GTP.EC 6.2.1.-. Succinate-CoA Ligase,Succinate-CoA Ligase (GDP-Forming),Succinate-CoA Ligases (ADP-Forming),Succinic Thiokinase,Succinic Thiokinases,Succinyl CoA Synthetase,Succinyl CoA Synthetases,Succinyl Coenzyme A Synthetase,Succinyl Coenzyme A Synthetases,CoA Synthetase, Succinyl,CoA Synthetases, Succinyl,Ligase, Succinate-CoA,Ligases, Succinate-CoA,Succinate CoA Ligase,Succinate CoA Ligases,Synthetase, Succinyl CoA,Synthetases, Succinyl CoA,Thiokinase, Succinic,Thiokinases, Succinic
D014812 Vitamin K A lipid cofactor that is required for normal blood clotting. Several forms of vitamin K have been identified: VITAMIN K 1 (phytomenadione) derived from plants, VITAMIN K 2 (menaquinone) from bacteria, and synthetic naphthoquinone provitamins, VITAMIN K 3 (menadione). Vitamin K 3 provitamins, after being alkylated in vivo, exhibit the antifibrinolytic activity of vitamin K. Green leafy vegetables, liver, cheese, butter, and egg yolk are good sources of vitamin K.

Related Publications

R Meganathan, and R Bentley
April 1965, Biochemical and biophysical research communications,
R Meganathan, and R Bentley
February 2023, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
R Meganathan, and R Bentley
October 1968, Biochemistry,
R Meganathan, and R Bentley
July 2022, Bioscience, biotechnology, and biochemistry,
Copied contents to your clipboard!