Morphology and behaviour of neural crest cells of chick embryo in vitro. 1979

D F Newgreen, and M Ritterman, and E A Peters

Neural primordia of chick embryos were cultured for three days and the behaviour of migrating neural crest cells studied. Somite cells were used as a comparison. Crest cells were actively multipolar with narrow projections which extended and retracted rapidly, contrasting to the gradual extension of somite-cell lamelleae. On losing cell contact, somite cells were also more directionally persistent. The rate of displacement of isolated crest cells was particularly low when calculated over a long time base. Both crest and somite cells were monolayered; contact paralysis occurred in somite cell collisions but was not ascertained for crest cells. However, crest cells in a population were far more directionally persistent than isolated cells. Contact duration between crest cells increased with time and they formed an open network. Eventually, retraction clumping occurred, initially and chiefly at the periphery of the crest outgrowth. Crest cells did not invade cultured embryonic mesenchymal or epithelial populations but endoderm underlapped them. No effects were observed on crest cells prior to direct contact. Substrate previously occupied by endoderm of ectoderm caused crest cells to flatten while substrate previously occupied by the neural tube caused them to round up and clump prematurely.

UI MeSH Term Description Entries
D009432 Neural Crest The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE. Neural Crest Cells,Neural Fold,Neural Groove,Cell, Neural Crest,Cells, Neural Crest,Crest, Neural,Crests, Neural,Fold, Neural,Folds, Neural,Groove, Neural,Grooves, Neural,Neural Crest Cell,Neural Crests,Neural Folds,Neural Grooves
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D F Newgreen, and M Ritterman, and E A Peters
July 1983, Developmental biology,
D F Newgreen, and M Ritterman, and E A Peters
January 1983, Histochemistry,
D F Newgreen, and M Ritterman, and E A Peters
October 1981, Developmental biology,
D F Newgreen, and M Ritterman, and E A Peters
January 1988, Heart and vessels,
D F Newgreen, and M Ritterman, and E A Peters
June 1983, Developmental biology,
D F Newgreen, and M Ritterman, and E A Peters
June 2016, Journal of agricultural and food chemistry,
D F Newgreen, and M Ritterman, and E A Peters
December 2006, Pediatric surgery international,
D F Newgreen, and M Ritterman, and E A Peters
September 1991, Development (Cambridge, England),
D F Newgreen, and M Ritterman, and E A Peters
September 1973, Developmental biology,
Copied contents to your clipboard!