Unilateral synthesis of reovirus double-stranded ribonucleic acid by a cell-free replicase system. 1971

S Sakuma, and Y Watanabe

A large-particle fraction obtained from reovirus-infected L cells contained both replicase and transcriptase activity. The in vitro replicase reaction slowed down soon after initiation, whereas the transcriptase reaction proceeded at an unabated rate. The replicase and transcriptase were both template-bound and could be separated from one another by controlled chymotryptic digestion followed by centrifugation in a CsCl gradient. The transcriptase was recovered as a sharp band (rho = 1.43) and resembled virus core derived from mature virions. In contrast, replicase activity was distributed throughout the gradient, indicating that replicase is associated with structures of various density in CsCl. In subsequent experiments, the replicase product was found to be indistinguishable from the double-stranded ribonucleic acid (RNA) reovirus genome with respect to its buoyant density in cesium-salt gradients and denaturation-annealing characteristics. A "hybridization-competition" experiment in which the replicase product was denatured and annealed in the presence of an excess of plus-RNA indicated that the in vitro replicase reaction proceeded by means of a unilateral synthesis of minus-RNA upon a preexisting plus-RNA template, presumably of single-stranded form.

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010756 Phosphoric Acids Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES. Pyrophosphoric Acids,Acids, Phosphoric,Acids, Pyrophosphoric
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D012087 Reoviridae A family of unenveloped RNA viruses with cubic symmetry. The twelve genera include ORTHOREOVIRUS; ORBIVIRUS; COLTIVIRUS; ROTAVIRUS; Aquareovirus, Cypovirus, Phytoreovirus, Fijivirus, Seadornavirus, Idnoreovirus, Mycoreovirus, and Oryzavirus. Aquareovirus,Cypovirus,Cytoplasmic Polyhedrosis Viruses,Fijivirus,Idnoreovirus,Mycoreovirus,Oryzavirus,Phytoreovirus,Reoviruses, Aquatic,Respiratory Enteric Orphan Viruses,Seadornavirus,Aquareoviruses,Aquatic Reovirus,Aquatic Reoviruses,Cypoviruses,Cytoplasmic Polyhedrosis Virus,Fijiviruses,Idnoreoviruses,Mycoreoviruses,Oryzaviruses,Phytoreoviruses,Polyhedrosis Virus, Cytoplasmic,Polyhedrosis Viruses, Cytoplasmic,Reovirus, Aquatic,Seadornaviruses
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion

Related Publications

S Sakuma, and Y Watanabe
November 1971, Journal of virology,
S Sakuma, and Y Watanabe
December 1976, The Journal of general virology,
S Sakuma, and Y Watanabe
June 1971, Journal of virology,
S Sakuma, and Y Watanabe
February 1967, Journal of virology,
S Sakuma, and Y Watanabe
January 1962, Biochimica et biophysica acta,
S Sakuma, and Y Watanabe
December 1986, Virus research,
S Sakuma, and Y Watanabe
July 1974, Journal of molecular biology,
Copied contents to your clipboard!