The diglyceride kinase of rat cerebral cortex. 1971

E G Lapetina, and J N Hawthorne

1. Formation of phosphatidic acid by diglyceride kinase (EC 2.7.1.-) in the presence of ATP and Mg(2+) was shown in a homogenate and subcellular fractions of rat cerebral cortex. 2. The kinase was activated by Mg(2+). Ca(2+) activated to a smaller extent but was inhibitory in the presence of optimum concentration of Mg(2+). Activity was greatly increased in the presence of added 1,2-diglyceride. 3. Sodium deoxycholate markedly stimulated the reaction, but other detergents (Cutscum and Triton X-100) did not. 4. Diglyceride kinase was concentrated in the supernatant and microsomal fractions from rat cerebral cortex. The distribution of the kinase in the particulate fractions resembled that of acetylcholinesterase and 5'-nucleotidase. 5. The rate of phosphatidic acid synthesis by the diglyceride kinase route was much greater than reported rates for acylation of 3-glycerophosphate and was also very rapid in comparison with the rates of other steps in the synthesis of phosphoinositides. 6. Acetylcholine had no stimulatory effect on diglyceride kinase of isolated intact nerve-ending particles or of nerve-ending membranes obtained after osmotic shock.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

E G Lapetina, and J N Hawthorne
May 1996, Neuroscience letters,
E G Lapetina, and J N Hawthorne
October 1974, Journal of neurochemistry,
E G Lapetina, and J N Hawthorne
May 1993, Journal of biochemistry,
E G Lapetina, and J N Hawthorne
June 2009, Metabolic brain disease,
E G Lapetina, and J N Hawthorne
July 1973, Journal of lipid research,
E G Lapetina, and J N Hawthorne
September 2005, Journal of veterinary science,
E G Lapetina, and J N Hawthorne
December 2006, Brain research,
E G Lapetina, and J N Hawthorne
June 1999, Trends in biochemical sciences,
E G Lapetina, and J N Hawthorne
January 1985, Neurochemical research,
Copied contents to your clipboard!