Production of monoclonal antibodies specific for two distinct steric portions of the glycolipid ganglio-N-triosylceramide (asialo GM2). 1979

W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori

Two hybrid cell lines were prepared by the fusion of mouse myeloma cells with the spleen cells of BALB/c mice that had been immunized with the glycolipid ganglio-N-triosylceramide (asialo GM2). The specificity of the monoclonal antibodies produced by these hybridomas, one an IgM and the other an IgG3, has been defined by hemagglutination inhibition, complement fixation, and lysis of glycolipid liposomes by antibody and complement. A major determinant recognized by the IgM antibody is the nonreducing terminal N-acetylgalactosamine including the C6 primary hydroxyl group, but excluding the C2-acetamide group of N-acetylgalactosamine, because oxidation with galactose oxidase produced a structure showing only minimal cross-reaction with the IgM but replacement of the N-acetyl group with an N-n-butyryl group produced a glycolipid that reacts with IgM antibody to the same extent as with the unmodified glycoplipd. A major determinant recognized by the IgG3 antibody is the terminal N-acetylgalactosamine including the C2-acetamido group, but excluding the C6 primary hydroxyl group of N-acetylgalactosamine, because replacement of the N-acetyl group with an N-n-butyryl group produced a glycolipid that did not react with the IgG3 antibody; in striking contrast the IgG3 antibody reacted with the C6-oxidized glycolipid as well as with the native glycolipid. Neither antibody reacted significantly with any other natural glycolipids tested including several that are structurally related to asialo GM2 such as ganglioside GM2, ganglio-N-tetraosylceramide (asialo GM1), or ceramide dihexoside. These results indicated that in addition to the fine structure specificity described above both antibodies recognize the nonreducing terminal GalNAc beta 1 leads to 4Gal structure. The strict antigenic specificity of these monoclonal anti-glycolipid antibodies indicates their great potential as specific probes for cell surface studies.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D010954 Plasmacytoma Any discrete, presumably solitary, mass of neoplastic PLASMA CELLS either in BONE MARROW or various extramedullary sites. Plasma Cell Tumor,Plasmocytoma,Plasma Cell Tumors,Plasmacytomas,Plasmocytomas,Tumor, Plasma Cell,Tumors, Plasma Cell
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003168 Complement Fixation Tests Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1. Complement Absorption Test, Conglutinating,Conglutination Reaction,Conglutinating Complement Absorption Test,Complement Fixation Test,Conglutination Reactions,Fixation Test, Complement,Fixation Tests, Complement,Reaction, Conglutination,Reactions, Conglutination,Test, Complement Fixation,Tests, Complement Fixation
D005678 G(M2) Ganglioside A glycosphingolipid that accumulates due to a deficiency of hexosaminidase A or B (BETA-N-ACETYLHEXOSAMINIDASES), or GM2 activator protein, resulting in GANGLIOSIDOSES, heredity metabolic disorders that include TAY-SACHS DISEASE and SANDHOFF DISEASE. GM2 Ganglioside,Tay-Sachs Disease Ganglioside,Ganglioside GM2,GM2, Ganglioside,Ganglioside, GM2,Ganglioside, Tay-Sachs Disease,Tay Sachs Disease Ganglioside
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D006385 Hemagglutination Inhibition Tests Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination. Hemagglutination Inhibition Test,Inhibition Test, Hemagglutination,Inhibition Tests, Hemagglutination,Test, Hemagglutination Inhibition,Tests, Hemagglutination Inhibition

Related Publications

W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
March 1985, American journal of obstetrics and gynecology,
W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
January 1987, Microbiology and immunology,
W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
February 1982, Transplantation,
W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
August 1988, Hybridoma,
W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
July 1992, Biochimica et biophysica acta,
W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
January 1992, Biochimica et biophysica acta,
W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
August 2000, Applied and environmental microbiology,
W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
May 1982, FEBS letters,
W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
January 1984, Journal of neuroscience research,
W W Young, and E M MacDonald, and R C Nowinski, and S I Hakomori
October 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!