Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder. 1979

M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz

Intracellular chloride activities, (Cl)c, and the electrical potential difference across the mucosal membrane, psimc, were determined in the isolated small intestine of the winter flounder, using Cl-selective and conventional (KCl-filled) microelectrodes. In the presence of a Na-containing buffer psimc averages -69 mV and (Cl)c averages 24 mM, a value that is 3.4 times that predicted for an equilibrium distribution across the mucosal membrane. On the other hand, when the tissue is then perfused with Na-free buffer, (Cl)c slowly falls to a value that does not differ significantly from that predicted for an equilibrium distribution, and psimc depolarizes significantly. Finally, when the tissue is again bathed in the Na-containing buffer, (Cl)c rapidly returns to a value well above equilibrium. These results, together with those of Frizzell et al. (J. Membrane Biol. 46:27, 1979), provide direct evidence that: (1) Cl is accumulated against its electrochemical potential difference (32 mV) by this tissue, and (2) this accumulation is coupled to and energized by the entry of Na down its steep electrochemical potential difference.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl

Related Publications

M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz
January 1983, Progress in clinical and biological research,
M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz
October 1998, Revista espanola de enfermedades digestivas,
M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz
November 1991, The American journal of physiology,
M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz
January 1975, The Journal of physiology,
M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz
June 1991, The Journal of membrane biology,
M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz
February 2003, American journal of physiology. Regulatory, integrative and comparative physiology,
M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz
May 1981, The American journal of physiology,
M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz
April 1980, The Journal of membrane biology,
M E Duffey, and S M Thompson, and R A Frizzell, and S G Schultz
May 1985, The American journal of physiology,
Copied contents to your clipboard!