regA protein of bacteriophage T4D: identification, schedule of synthesis, and autogenous regulation. 1979

T S Cardillo, and E F Landry, and J S Wiberg

Proteins labeled with 14C-amino acids after infection of Escherichia coli B by T4 phage were examined by electrophoresis in the presence of sodium dodecyl sulfate. Four regA mutants (regA1, regA8, regA11, and regA15) failed to make a protein having a molecular weight of about 12,000, whereas mutant regA9 did make such a protein; regA15 produced a new, apparently smaller protein that was presumably a nonsense fragment, whereas regA11 produced a new, apparently larger protein. We conclude that the 12,000-dalton protein was the product of the regA gene. The molecular weight assignment rested primarily on our finding that the regA protein had the same mobility as the T4 gene 33 protein, which we identified by electrophoresis of whole-cell extracts of E. coli B infected with a gene 33 mutant, amE1120. Synthesis of wild-type regA protein occurred from about 3 to 11 min after infection at 37 degrees C in the DNA+ state and extended to about 20 min in the DNA- state. However, synthesis of the altered regA proteins of regA9, regA11, and regA15 occurred at a higher rate and for a much longer period in both the DNA+ and DNA- states; thus, the regA gene is autogenously regulated. At 30 degrees C, both regA9 and regA11 exhibited partial regA function by eventually shutting off the synthesis of many T4 early proteins; the specificity of this shutoff differed between these two mutants. We also obtained evidence that the regA protein is not Stevens's "polypeptide 3." As a technical point, we found that, when quantitating acid-precipitable radioactivity in protein samples containing sodium dodecyl sulfate, it was necessary to use 15 to 20% trichloroacetic acid; use of 5% acid, e.g., resulted in loss of over half of the labeled protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

T S Cardillo, and E F Landry, and J S Wiberg
June 1977, Journal of virology,
T S Cardillo, and E F Landry, and J S Wiberg
August 1988, Genetics,
T S Cardillo, and E F Landry, and J S Wiberg
April 1968, Virology,
T S Cardillo, and E F Landry, and J S Wiberg
November 1975, Doklady Akademii nauk SSSR,
T S Cardillo, and E F Landry, and J S Wiberg
October 1973, Journal of virology,
T S Cardillo, and E F Landry, and J S Wiberg
November 1990, The Journal of biological chemistry,
T S Cardillo, and E F Landry, and J S Wiberg
October 1985, The Journal of biological chemistry,
T S Cardillo, and E F Landry, and J S Wiberg
September 1989, Biochemical and biophysical research communications,
T S Cardillo, and E F Landry, and J S Wiberg
April 1974, Journal of molecular biology,
T S Cardillo, and E F Landry, and J S Wiberg
March 1968, Genetics,
Copied contents to your clipboard!