Quasi-hexagonal molecular packing in collagen fibrils. 1979

D J Hulmes, and A Miller

Collagen molecules in native 66.8 nm (D) periodic fibrils are widely believed to be assembled into discrete, rope-like substructures, or microfibrils. Several types of microfibril have been proposed (2, 4, 5, 7- and 8-stranded) mainly on the basis of information contained in the medium angle X-ray diffraction patterns of native tendon fibres. These patterns show a series of equatorial and near-equatorial Bragg reflections which indicate that the collagen molecules are arranged on a three-dimensional crystalline lattice. The 4-stranded, 5-stranded and 8-stranded microfibrils are D-periodic with approximate diameter 3.8 nm, and these and the 2-stranded model are supposed to be packed on a three-dimensional lattice whose basal unit cell, (approximately) perpendicular to the fibril axis, is tetragonal (or quasi-tetragonal)with side a, a square root 2 or 2a, where a is approximately 3.8 nm. In this paper we describe a re-interpretation of the X-ray data which leads to a new model for the crystalline regions of the fibril, based on quasi-hexagonal molecular packing without microfibrillar sub-structures, and hence having the character of a molecular crystal.

UI MeSH Term Description Entries
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013710 Tendons Fibrous bands or cords of CONNECTIVE TISSUE at the ends of SKELETAL MUSCLE FIBERS that serve to attach the MUSCLES to bones and other structures. Endotenon,Epotenon,Tendons, Para-Articular,Tendons, Paraarticular,Endotenons,Epotenons,Para-Articular Tendon,Para-Articular Tendons,Paraarticular Tendon,Paraarticular Tendons,Tendon,Tendon, Para-Articular,Tendon, Paraarticular,Tendons, Para Articular
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D J Hulmes, and A Miller
January 1987, Journal of molecular biology,
D J Hulmes, and A Miller
June 1983, Journal of molecular biology,
D J Hulmes, and A Miller
January 1983, Biofizika,
D J Hulmes, and A Miller
May 1995, Biophysical journal,
D J Hulmes, and A Miller
April 1971, Nature,
D J Hulmes, and A Miller
August 2008, Biophysical journal,
Copied contents to your clipboard!