Ionic basis for electrical properties of tonic fibres in rat extraocular muscles. 1979

A Y Bondi, and D J Chiarandini

1. The ionic conductances underlying some of the electrophysiological properties of multiply innervated or tonic fibres of rat extraocular muscles were examined in vitro with double-barrelled micro-electrodes.2. Exposure of the muscle to a Cl-free saline did not change the effective resistance (R(eff)) of tonic fibres which was 5.14 +/- 0.45 MOmega (n = 7) in control saline and 4.78 +/- 0.45 MOmega (n = 12) in Cl-free saline (P > 0.1). In contrast, in singly innervated or twitch fibres Cl removal increased R(eff) from 1.77 +/- 0.21 MOmega (n = 19) to 2.69 +/- 0.12 MOmega (n = 22) (P < 0.001).3. Tonic fibres with membrane potentials restored to - 80 mV by injecting current responded to intracellular depolarizing pulses with a brief, slow response (slow peak potential) which added to the rising phase of the electrotonic potential. The slow peak potential began at a membrane potential of - 40 to - 35 mV and was graded. Increasing depolarizations evoked faster and larger responses which did not over-shoot the zero level of membrane potential.4. The slow peak potential was not blocked by 10 muM-D-600 hydrochloride but was markedly reduced by the absence of Na and by 10 muM-tetrodotoxin. The response was broadened about five times by 25 mM-tetraethylammonium.5. Raising bath temperature from 21-25 degrees C to 37 degrees C reversibly depressed and shortened the slow peak potential but did not transform it into an action potential.6. It is concluded that the characteristic high R(eff) of tonic fibres results from a lack of a membrane conductance to Cl and that the slow peak potential involves the transient activation of Na and K channels which are pharmacologically similar to the respective channels of twitch fibres.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005711 Gallopamil Coronary vasodilator that is an analog of iproveratril (VERAPAMIL) with one more methoxy group on the benzene ring. Methoxyverapamil,D-600,D600,Elgiprona,Gallobeta,Gallopamil Hydrochloride,Prebet,Procorum,gallopamil von ct,D 600,Hydrochloride, Gallopamil
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

A Y Bondi, and D J Chiarandini
January 1978, Journal de physiologie,
A Y Bondi, and D J Chiarandini
July 1976, The Journal of physiology,
A Y Bondi, and D J Chiarandini
January 1989, Journal of neurophysiology,
A Y Bondi, and D J Chiarandini
May 1979, The Journal of physiology,
A Y Bondi, and D J Chiarandini
June 1987, Current eye research,
A Y Bondi, and D J Chiarandini
July 1970, Nature,
A Y Bondi, and D J Chiarandini
January 1981, Uspekhi fiziologicheskikh nauk,
A Y Bondi, and D J Chiarandini
December 1963, The Journal of physiology,
A Y Bondi, and D J Chiarandini
February 2004, Journal of neurophysiology,
A Y Bondi, and D J Chiarandini
October 1981, Acta physiologica Scandinavica,
Copied contents to your clipboard!