Correlative studies on sarcolemmal ultrastructure, permeability, and loss of intracellular enzymes in the isolated heart perfused with calcium-free medium. 1979

M Ashraf

Effects of calcium-free perfusion and calcium-free perfusion followed by reperfusion with calcium on sarcolemmal structure, sarcolemmal permeability, and creatine phosphokinase loss were investigated in isolated perfused rat hearts. Release of creatine phosphokinase was significant (P less than 0.0002) after 4-5 minutes of perfusion with Ca++-free medium, but later releases in comparison to their immediately preceding periods became significant only after more than 20-minute perfusion. Poor correlation between enzyme loss and lanthanum permeability prior to 20 minutes of Ca++-free perfusion was noted. After 20 minutes of Ca++-free perfusion, the basal lamina was separated from the plasma membrane, and lanthanum was seen in the cytoplasm. The intramembranous particles began to aggregate at that time. The morphologic and enzymatic changes were dramatic following reperfusion of calcium-free perfused hearts. Morphologic changes in these hearts included separation of basal lamina, cellular separation at the intercalated disk, dissolution of actin filaments at the region of I band, contraction bands, cell swelling, and staining or filling of mitochondrial membranes with La+++. Increased sarcolemmal permeability was associated with tears and aggregation of intramembranous particles in the sarcolemmal lipid bilayers. These results suggest that reperfusion of Ca++-free perfused cells causes irreversible damage to the sarcolemmal lipid bilayer, and the degree of alterations induced in the cells is dependent upon the initial duration of Ca++-free perfusion.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012508 Sarcolemma The excitable plasma membrane of a muscle cell. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Sarcolemmas
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M Ashraf
April 1971, The Journal of pharmacology and experimental therapeutics,
M Ashraf
December 1960, The American journal of physiology,
M Ashraf
October 1982, Proceedings of the National Academy of Sciences of the United States of America,
M Ashraf
June 1980, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!