Effects of enkephalin analogue and naloxone on cat spinal cord dorsal root potentials. 1979

B Pomeranz, and N Gurevich

A systemically active enkephalin analogue, FK33824, given intravenously depressed dorsal root potentials in cat spinal cord. The negative DR V and positive DR VI, measured by computer, were both decreased; this effect was reversed by small doses of intravenous naloxone. Naloxone, given alone, with no previous analogue produced no changes in dorsal root potentials suggesting the absence of a basal enkephalin tone. A second injection of FK33824 was much less effective that the first dose. The results were discussed in relation to presynaptic mechanisms for analgesia: we proposed that FK33824 causes presynaptic inhibition by modulation rather than by depolarization of primary afferent fibers.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D004745 Enkephalins One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla. Enkephalin
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013126 Spinal Nerve Roots Paired bundles of NERVE FIBERS entering and leaving the SPINAL CORD at each segment. The dorsal and ventral nerve roots join to form the mixed segmental spinal nerves. The dorsal roots are generally afferent, formed by the central projections of the spinal (dorsal root) ganglia sensory cells, and the ventral roots are efferent, comprising the axons of spinal motor and PREGANGLIONIC AUTONOMIC FIBERS. Dorsal Roots,Spinal Roots,Ventral Roots,Dorsal Root,Nerve Root, Spinal,Nerve Roots, Spinal,Root, Dorsal,Root, Spinal,Root, Spinal Nerve,Root, Ventral,Roots, Dorsal,Roots, Spinal,Roots, Spinal Nerve,Roots, Ventral,Spinal Nerve Root,Spinal Root,Ventral Root
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

B Pomeranz, and N Gurevich
May 1946, Journal of neurophysiology,
B Pomeranz, and N Gurevich
January 1964, Federation proceedings. Translation supplement; selected translations from medical-related science,
B Pomeranz, and N Gurevich
May 1988, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
B Pomeranz, and N Gurevich
January 1987, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
B Pomeranz, and N Gurevich
January 1983, Brain research,
B Pomeranz, and N Gurevich
May 1979, Masui. The Japanese journal of anesthesiology,
B Pomeranz, and N Gurevich
February 1968, The Journal of comparative neurology,
B Pomeranz, and N Gurevich
July 1977, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!