An inhibitor of chloramphenicol acetyltransferase produced by Streptomyces. 1979

S Miyamura, and K Koizumi, and Y Nakagawa

UI MeSH Term Description Entries
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013290 Streptococcal Infections Infections with bacteria of the genus STREPTOCOCCUS. Group A Strep Infection,Group A Streptococcal Infection,Group A Streptococcal Infections,Group B Strep Infection,Group B Streptococcal Infection,Group B Streptococcal Infections,Infections, Streptococcal,Infection, Streptococcal,Streptococcal Infection
D013302 Streptomyces A genus of bacteria that form a nonfragmented aerial mycelium. Many species have been identified with some being pathogenic. This genus is responsible for producing a majority of the ANTI-BACTERIAL AGENTS of practical value.
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

S Miyamura, and K Koizumi, and Y Nakagawa
September 1985, Biochemistry,
S Miyamura, and K Koizumi, and Y Nakagawa
July 2012, Journal of natural products,
S Miyamura, and K Koizumi, and Y Nakagawa
October 1977, Journal of general microbiology,
S Miyamura, and K Koizumi, and Y Nakagawa
November 1976, The Journal of antibiotics,
S Miyamura, and K Koizumi, and Y Nakagawa
January 1991, Annual review of biophysics and biophysical chemistry,
S Miyamura, and K Koizumi, and Y Nakagawa
April 1996, Bioscience, biotechnology, and biochemistry,
S Miyamura, and K Koizumi, and Y Nakagawa
May 1987, Analytical biochemistry,
Copied contents to your clipboard!