Temperature effects on anaphase chromosome movement in the spermatocytes of two species of crane flies (Nephrotoma suturalis Loew and Nephrotoma ferruginea Fabricius). 1979

C J Schaap, and A Forer

Using phase-contrast cinemicrography on living crane fly (Nephrotoma suturalis Loew and Nephrotoma ferruginea Fabricius) spermatocytes, we have studied the effects of a range of temperatures (6--30 degrees C) on the anaphase I chromosome-to-pole movements of both autosomes and sex chromosomes. In contrast to previous work we have been able to study chromosome-to-pole velocities of autosomes without concurrent pole-to-pole elongation. In these cells we found that the higher the temperature, the faster was the autosomal chromosomes movement. From reviewing the literature we find that the general pattern of the effects of temperature on chromosome movement is similar whether or not pole-to-pole elongation occurs simultaneously with the chromosome-to-pole movement. Changes in cellular viscosities calculated from measurements of particulate Brownian movement do not seem to be able to account for the observed velocity differences due to temperature. Temperature effects on muscle contraction speed, flagellar beat frequency, ciliary beat frequency, granule flow in nerves, and chromosome movement have been compared, as have the activation energies for the rate-limiting steps in these motile systems: no distinction between possible mechanisms of force production is possible using these comparisons. The data show that even the different autosomes within single spermatocytes usually move at different speeds. These velocity differences cannot simply be related to chromosome size as the autosomes are visually indistinguishable. The sex chromosomes start their anaphase poleward movement after that of the autosomes, and move more slowly (by a factor of about 4), but their velocities appear to be affected by temperature in the same fashion as those of the autosomes. The interval between the onset of autosome anaphase and sex chromosome anaphase is also affected by temperature: the higher the temperature, the shorter the interval between the 2 stages. We have observed abnormalities in sex chromosome segregation, which may be due to temperature, but have not determined what the exact temperature shift conditions are that cause these abnormalities.

UI MeSH Term Description Entries
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004175 Diptera An order of the class Insecta. Wings, when present, number two and distinguish Diptera from other so-called flies, while the halteres, or reduced hindwings, separate Diptera from other insects with one pair of wings. The order includes the families Calliphoridae, Oestridae, Phoridae, SARCOPHAGIDAE, Scatophagidae, Sciaridae, SIMULIIDAE, Tabanidae, Therevidae, Trypetidae, CERATOPOGONIDAE; CHIRONOMIDAE; CULICIDAE; DROSOPHILIDAE; GLOSSINIDAE; MUSCIDAE; TEPHRITIDAE; and PSYCHODIDAE. The larval form of Diptera species are called maggots (see LARVA). Flies, True,Flies,Dipteras,Fly,Fly, True,True Flies,True Fly
D000705 Anaphase The phase of cell nucleus division following METAPHASE, in which the CHROMATIDS separate and migrate to opposite poles of the spindle. Anaphases
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012730 Sex Chromosomes The homologous chromosomes that are dissimilar in the heterogametic sex. There are the X CHROMOSOME, the Y CHROMOSOME, and the W, Z chromosomes (in animals in which the female is the heterogametic sex (the silkworm moth Bombyx mori, for example)). In such cases the W chromosome is the female-determining and the male is ZZ. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Gonosomes,Chromosome, Sex,Chromosomes, Sex,Gonosome,Sex Chromosome

Related Publications

C J Schaap, and A Forer
September 1972, Journal of cell science,
C J Schaap, and A Forer
March 1974, The Journal of cell biology,
Copied contents to your clipboard!