Wiskott-Aldrich syndrome, a genetically determined cellular immunologic deficiency: clinical and laboratory responses to therapy with transfer factor. 1970

A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg

Patients with diseases associated with defects in cellular immunity, such as the Wiskott-Aldrich syndrome, characteristically have severe recurrent infections and usually succumb to overwhelming infection at an early age. This communication describes a patient with this syndrome, defective delayed hypersensitivity by skin tests and by in vitro lymphocyte response, who was treated with dialysate of peripheral blood leukocytes (transfer factor). After treatment, the clinical status of the patient improved dramatically, concomitant with the development of delayed hypersensitivity to antigens to which the donor was sensitive. In vitro tests after transfer indicated that the patient's lymphocytes, when stimulated by specific antigen, produced migration inhibitory factor without concomitant DNA synthesis. These observations dissociate skin test sensitivity and activity of migration inhibitory factor from in vitro blastogenesis. Further, the response to phytohemagglutinin remained diminished before and after therapy. While these findings represent only an individual case, the climical results suggest that investigation of the use of transfer factor appears warranted in the therapy of Wiskott-Aldrich syndrome and other genetically-determined diseases associated with impaired cellular immunity.

UI MeSH Term Description Entries
D006968 Hypersensitivity, Delayed An increased reactivity to specific antigens mediated not by antibodies but by sensitized T CELLS. Hypersensitivity, Tuberculin-Type,Hypersensitivity, Type IV,Tuberculin-Type Hypersensitivity,Type IV Hypersensitivity,Delayed Hypersensitivity,Delayed Hypersensitivities,Hypersensitivity, Tuberculin Type,Tuberculin Type Hypersensitivity,Tuberculin-Type Hypersensitivities,Type IV Hypersensitivities
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007112 Immunity, Maternally-Acquired Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk. Fetal Immunity, Maternally-Acquired,Maternally-Acquired Immunity,Neonatal Immunity, Maternally-Acquired,Immunity, Maternally Acquired,Fetal Immunities, Maternally-Acquired,Fetal Immunity, Maternally Acquired,Immunity, Maternally-Acquired Fetal,Immunity, Maternally-Acquired Neonatal,Maternally Acquired Immunities,Maternally Acquired Immunity,Maternally-Acquired Fetal Immunities,Maternally-Acquired Fetal Immunity,Maternally-Acquired Immunities,Maternally-Acquired Neonatal Immunities,Maternally-Acquired Neonatal Immunity,Neonatal Immunities, Maternally-Acquired,Neonatal Immunity, Maternally Acquired
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen

Related Publications

A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
May 1978, The British journal of dermatology,
A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
February 1967, The Journal of pediatrics,
A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
March 1972, Lijecnicki vjesnik,
A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
May 1975, American journal of diseases of children (1960),
A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
January 2009, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
April 1978, Minerva pediatrica,
A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
April 1968, The American journal of medicine,
A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
November 1973, The Journal of pediatrics,
A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
September 1976, The Journal of investigative dermatology,
A S Levin, and L E Spitler, and D P Stites, and H H Fudenberg
January 2014, Current gene therapy,
Copied contents to your clipboard!