Comparison of dopamine synthesis regulation in the terminals of nigrostriatal, mesolimbic, tuberoinfundibular and tuberohypophyseal neurons. 1979

K T Demarest, and K E Moore

The rate of accumulation of DOPA after the administration of decarboxylase inhibitor (NSD 1015) was determined in the striatum, olfactory tubercle, median eminence and posterior pituitary of the rat brain in order to obtain an index of the rate of synthesis of dopamine (DA) in the terminals of nigrostriatal, mesolimbic, tuberoinfundibular and tuberohypophyseal neurons, respectively. In all brain regions an increase in the concentration of DA by the administration of a monoamine oxidase inhibitor decreased DOPA accumulation while a decrease in the concnetration of DA by the administration of reserpine increased DOPA accumulation. These results indicate that end product inhibition plays a role in regulating DA synthesis in all four neuronal systems. Injections of DA agonists decreased and DA antagonists increased the accumulation of DOPA instriatum, olfactory tubercle and posterior pituitary, but not in median eminence. The administration of gamma-butyrolactone (GBL) and baclofen increased the concentration of DA and the accumulation of DOPA in the striatum, olfactory tubercle and posterior pituitary, and these effects were reversed by the administration of apomorphine. On the other hand, GBL and baclofen had no effect on the concentration of DA or the accumulation of DOPA in the median eminence. These two drugs did, however, reduce the alpha-methyltyrosine-induced decline of DA in the median eminence suggesting that they inhibit the activity of tuberoinfundibular nerves just as they do DA nerves in other systems. These results suggest that the regulation of DA synthesis in terminals of nigrostriatal, mesolimbic and tuberohypophyseal nerves is different from that in tuberoinfundibular nerves in that the latter nerves appear to lack an autoreceptor regulatory mechanism.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D008473 Median Eminence Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND. Eminentia Mediana,Medial Eminence,Eminence, Medial,Eminence, Median,Eminences, Medial,Eminentia Medianas,Medial Eminences,Mediana, Eminentia,Medianas, Eminentia
D009526 Nialamide An MAO inhibitor that is used as an antidepressive agent.
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D010891 Piribedil A dopamine D2 agonist. It is used in the treatment of parkinson disease, particularly for alleviation of tremor. It has also been used for circulatory disorders and in other applications as a D2 agonist. Piribendyl,ET-495,EU-4200,Piribedil Hydrochloride,Piribedil Mesylate,Piribedil Mono-hydrochloride,Trivastal,ET 495,ET495,EU 4200,EU4200,Hydrochloride, Piribedil,Mesylate, Piribedil,Mono-hydrochloride, Piribedil,Piribedil Mono hydrochloride
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D004295 Dihydroxyphenylalanine A beta-hydroxylated derivative of phenylalanine. The D-form of dihydroxyphenylalanine has less physiologic activity than the L-form and is commonly used experimentally to determine whether the pharmacological effects of LEVODOPA are stereospecific. Dopa,3,4-Dihydroxyphenylalanine,3-Hydroxy-DL-tyrosine,Dihydroxyphenylalanine Hydrochloride, (2:1),beta-Hydroxytyrosine,3 Hydroxy DL tyrosine,3,4 Dihydroxyphenylalanine,beta Hydroxytyrosine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine

Related Publications

K T Demarest, and K E Moore
January 1979, Progress in neurobiology,
K T Demarest, and K E Moore
January 1977, Advances in biochemical psychopharmacology,
K T Demarest, and K E Moore
January 1981, Psychoneuroendocrinology,
K T Demarest, and K E Moore
January 2012, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi,
K T Demarest, and K E Moore
May 1994, The Journal of pharmacology and experimental therapeutics,
K T Demarest, and K E Moore
December 2023, International journal of molecular sciences,
Copied contents to your clipboard!