Slow motile mutant in Salmonella typhimurium. 1965

M Enomoto

Enomoto, Masatoshi (National Institute of Genetics, Misima, Japan). Slow motile mutant in Salmonella typhimurium. J. Bacteriol. 90:1696-1702. 1965.-A slow motile mutant, SJ399, was isolated from a wild-type strain of Salmonella typhimurium TM2. The mutant was as motile as the wild type in broth culture at 37 C. However, on semisolid medium it produced a much narrower swarming band than TM2. The motility of this mutant was hindered by the viscosity of semisolid medium. H antigenicity and morphological characters of flagella of the mutant were the same as those of the wild type. The motility phage, chi, responded differently to SJ399 and the wild type. Plaques of SJ399 were small and cloudy, whereas on the wild type they were large and clear. The efficiency of plating on SJ399 was 0.36 as compared with 1 with the wild type. Stained preparations revealed that the mutant had about one-third the number of flagella of the wild type. The reduction of the number of flagella also was ascertained by biochemical measurement of flagellar protein which was purified after deflagellation from cells. The content of flagellin in SJ399 was about 32% of that of the wild type. Phage P22-mediated transductions from SJ399 to nonflagellated (fla(-)) and paralyzed (mot(-)) mutants showed that the mutant SJ399 complements seven fla(-) and three mot(-) strains which are representative mutants of flagellation and motility cistrons, respectively. The mutation site of SJ399 was cotransduced with both motA and B cistrons. The two point cross tests between SJ399 and mot mutants revealed that the mutation site of SJ399 is located in the motB cistron. The insertion of the genetic region containing the mutation site of SJ399 to the motB cistron is discussed in relation to intracistronic complementation.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D005823 Genetics The branch of science concerned with the means and consequences of transmission and generation of the components of biological inheritance. (Stedman, 26th ed)
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012483 Salmonella Phages Viruses whose host is Salmonella. A frequently encountered Salmonella phage is BACTERIOPHAGE P22. Salmonella Bacteriophages,Bacteriophage, Salmonella,Bacteriophages, Salmonella,Salmonella Bacteriophage,Salmonella Phage
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M Enomoto
January 1973, Molecular & general genetics : MGG,
M Enomoto
May 1968, Journal of bacteriology,
M Enomoto
October 1995, FEMS microbiology letters,
M Enomoto
March 1972, Journal of bacteriology,
M Enomoto
November 1974, Journal of bacteriology,
M Enomoto
January 1979, Advances in experimental medicine and biology,
M Enomoto
October 1969, Journal of bacteriology,
M Enomoto
February 1971, Mutation research,
M Enomoto
January 1998, Infection and immunity,
Copied contents to your clipboard!