Cation transport in Escherichia coli. VI. K exchange. 1966

W Epstein, and S G Schultz

K influx and net K flux have been measured in suspensions of chloramphenicol-arrested Escherichia coli. The rate of K exchange in the steady state was independent of the K concentration of the medium over a 200-fold range. Under a number of experimental conditions the rate of exchange may be considerably increased or decreased without changing the cellular K content. These results show that under these conditions changes in K influx are associated with equal changes in K efflux, and suggest that the latter process is, at least in part, both carrier-mediated and tightly coupled to the influx process.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011194 Potassium Isotopes Stable potassium atoms that have the same atomic number as the element potassium, but differ in atomic weight. K-41 is a stable potassium isotope. Isotopes, Potassium
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

W Epstein, and S G Schultz
September 1978, The Journal of general physiology,
W Epstein, and S G Schultz
August 1971, Comparative biochemistry and physiology. B, Comparative biochemistry,
W Epstein, and S G Schultz
November 1961, The Journal of general physiology,
W Epstein, and S G Schultz
March 1976, The Journal of general physiology,
W Epstein, and S G Schultz
October 1978, The Journal of biological chemistry,
W Epstein, and S G Schultz
November 1971, Journal of bacteriology,
W Epstein, and S G Schultz
February 1977, The Journal of biological chemistry,
W Epstein, and S G Schultz
November 1968, The Journal of biological chemistry,
W Epstein, and S G Schultz
November 1974, Journal of bacteriology,
Copied contents to your clipboard!