Role of the galactose pathway in the regulation of beta-galactosidase. 1966

K Paigen

Paigen, Kenneth (Roswell Park Memorial Institute, Buffalo, N.Y.). Role of the galactose pathway in the regulation of beta-galactosidase. J. Bacteriol. 92:1394-1403. 1966.-Galactose and its metabolites, galactose-1-phosphate, uridine diphosphogalactose, and uridine diphosphoglucose, as well as metabolites derived from uridine diphosphoglucose, were tested for their role in the regulation of beta-galactosidase. In cultures of wild-type Escherichia coli strains K-12 and B, exogenous galactose was no more effective as a repressor than were other carbon sources. Exogenous galactose also did not repress beta-galactosidase when added to mutants which can accumulate intracellular galactose or galactose-1-phosphate, indicating that these compounds do not repress. In such strains, repression of beta-galactosidase formation did occur if galactose was added in the presence of another metabolizable carbon source. This repression is presumably a consequence of the growth inhibition which follows the accumulation of these compounds, and the general catabolite repression which develops during growth inhibition. Exogenous galactose did repress beta-galactosidase in a mutant which accumulates uridine diphosphogalactose. This appears to result from a combination of several factors. These include a general inhibition of protein synthesis through depletion of the uridine triphosphate pool, catabolite inhibition as a consequence of growth inhibition, as well as a specific inhibition of beta-galactosidase formation. Glucose repression of beta-galactosidase was normal in a mutant strain blocked in the formation of uridine diphosphoglucose from uridine triphosphate and glucose-1-phosphate, indicating that neither uridine diphosphoglucose nor any compound uniquely derived from it functions as the hypothetical catabolite repressor. It is concluded that at least two separate mechanisms exist for the endogenous repression of beta-galactosidase in E. coli. One is exerted by uridine diphosphogalactose or its metabolic product; the other, by the generalized catabolite repressor which is still formed in strains unable to make uridine diphosphogalactose or uridine diphosphoglucose.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004794 Enzyme Repression The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. Repression, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D005696 Galactosidases A family of galactoside hydrolases that hydrolyze compounds with an O-galactosyl linkage. EC 3.2.1.-. Galactosidase
Copied contents to your clipboard!