Cross-resistance relationships in Escherichia coli between ultraviolet radiation and nitrous acid. 1964

A Zampieri, and J Greenberg

Zampieri, Antonio (Palo Alto Medical Research Foundation, Palo Alto, Calif.), and Joseph Greenberg. Cross-resistance relationships in Escherichia coli between ultraviolet radiation and nitrous acid. J. Bacteriol. 87:1094-1099. 1964.-A number of radiosensitive and radioresistant strains of Escherichia coli were tested for sensitivity to injury by nitrous acid. All the radioresistant strains, including 13 radioresistant mutants of strain S, B/r, Bpr5, and K-12, were found to be significantly more resistant to nitrous acid than were the radiosensitive strains S and B. The radioresistant mutants of strain S, Bpr5, and K-12 displayed similar responses to nitrous acid and were less resistant than was strain B/r. Strains B and S were indistinguishable on the basis of nitrous acid sensitivity. The survival curves of all strains examined were similar in shape to corresponding survival curves after ultraviolet radiation. The sensitivity to nitrous acid of the radiosensitive strains S and B, but not that of the radioresistant strains, was found to be greater on Tryptone medium than on Penassay medium, and greater on Penassay medium than on glucose-salts medium. Between 2 and 3% of the strain S survivors of nitrous acid treatment were radioresistant; 46 such radioresistant mutants were isolated and found to be identical in cross-resistance pattern with radioresistant types (R(3), R(4), or R(6)) previously described. The proportions in which these radioresistant types were found to occur were similar to those observed after selection by other radiomimetic agents.

UI MeSH Term Description Entries
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D011830 Radiation Effects The effects of ionizing and nonionizing radiation upon living organisms, organs and tissues, and their constituents, and upon physiologic processes. It includes the effect of irradiation on food, drugs, and chemicals. Effects, Radiation,Effect, Radiation,Radiation Effect
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

A Zampieri, and J Greenberg
December 2011, Evolution; international journal of organic evolution,
A Zampieri, and J Greenberg
September 1963, Magyar radiologia,
A Zampieri, and J Greenberg
October 2005, Enfermedades infecciosas y microbiologia clinica,
A Zampieri, and J Greenberg
June 1963, International journal of radiation biology and related studies in physics, chemistry, and medicine,
A Zampieri, and J Greenberg
November 1969, Journal of bacteriology,
A Zampieri, and J Greenberg
June 1976, Journal of bacteriology,
A Zampieri, and J Greenberg
May 2022, Journal of microbiology and biotechnology,
Copied contents to your clipboard!