Conditional mutations involving septum formation in Escherichia coli. 1967

J R Walker, and A B Pardee

The lon(-) mutation is responsible for a defect in cell division of Escherichia coli lightly irradiated with ultraviolet light (UV). These lon(-) mutants can be isolated readily by a procedure described here. Physiological studies were performed with the objective of determining the role of the lon gene. Unirradiated lon(-) mutants grow normally, except that a correlation of this mutation with capsule formation has been noted previously. These two properties can be separated, however. After irradiation, lon(-) grows as long filaments because septum formation is prevented. The filaments eventually lyse. Mass increase and deoxyribonucleic acid and enzyme synthesis appear to proceed normally. Thus, the lesion produced by UV appears to be highly specific. In bacteria that carry both genes (merozygotes), lon(+) is dominant to lon(-). Septum formation is restored to irradiated lon(-) bacteria by introduction of lon(+) by conjugation. Also, normal growth can be restored by nutritional variations. It is concluded that lon(+) is able to nullify the effects of the UV lesion under conditions where lon(-) cannot. Possibly, capsule precursors that can accumulate in the latter are responsible for the difference because they interfere with repair of the UV lesion.

UI MeSH Term Description Entries
D008190 Lyases A class of enzymes that catalyze the cleavage of C-C, C-O, and C-N, and other bonds by other means than by hydrolysis or oxidation. (Enzyme Nomenclature, 1992) EC 4. Desmolase,Desmolases,Lyase
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011691 Puromycin A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis. CL-13900,P-638,Puromycin Dihydrochloride,Puromycin Hydrochloride,Stylomycin,CL 13900,CL13900,P 638,P638
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D001433 Bacteriolysis Rupture of bacterial cells due to mechanical force, chemical action, or the lytic growth of BACTERIOPHAGES. Bacteriolyses

Related Publications

J R Walker, and A B Pardee
October 1976, Journal of bacteriology,
J R Walker, and A B Pardee
January 2008, Methods in molecular biology (Clifton, N.J.),
J R Walker, and A B Pardee
May 2004, Journal of bacteriology,
J R Walker, and A B Pardee
April 1973, Genetical research,
J R Walker, and A B Pardee
January 1981, Molecular & general genetics : MGG,
J R Walker, and A B Pardee
February 1973, Journal of bacteriology,
J R Walker, and A B Pardee
April 1991, Molecular & general genetics : MGG,
J R Walker, and A B Pardee
March 1984, Journal of bacteriology,
J R Walker, and A B Pardee
December 2006, Current opinion in microbiology,
J R Walker, and A B Pardee
October 1967, Journal of bacteriology,
Copied contents to your clipboard!