Effects of glycogen depletion and work load on postexercise O2 consumption and blood lactate. 1979

S S Segal, and G A Brooks

To study a possible relationship between blood lactate and O2 consumption (VO2) after exercise, 11 male subjects exercised on a bicycle ergometer at moderate and heavy work loads in both normal glycogen and glycogen-depleted states. At rest, glycogen depletion resulted in significantly lowered blood glucose and lactate concentrations, CO2 production (VCO2), respiratory exchange ratio (R), and minute ventilation (VE). With the exception of glucose, these variables changed more in response to heavy exercise (HE: 2 min at a mean of 1,750 kg.m/min) than to moderate exercise (ME: 2 min at a mean of 1,000 kg.m/min). At either work load, VCO2, R, and lactate showed consistently greater responses in the normal glycogen state. The slope of the initial component of the postexercise VO2 curve was unaffected by either work load or lactate. Although the slope of the slow component of the postexercise VO2 curve became significantly more negative after HE, it was unaffected by the level of lactate. These results are inconsistent with the hypothesis of a "lactacid O2 debt." Exercise intensity was the predominant factor influencing the magnitude and kinetics of postexercise VO2. Glycogen depletion resulted in lower VCO2, R, and blood lactate, but higher VE during heavy exercise. The results suggest that factors, in addition to CO2 flux to the lungs, influence VE during exercise.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006003 Glycogen
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S S Segal, and G A Brooks
January 1992, Medicine and science in sports and exercise,
S S Segal, and G A Brooks
August 1991, Metabolism: clinical and experimental,
S S Segal, and G A Brooks
February 1987, Journal of applied physiology (Bethesda, Md. : 1985),
S S Segal, and G A Brooks
September 1988, Journal of applied physiology (Bethesda, Md. : 1985),
S S Segal, and G A Brooks
May 1967, Research quarterly,
S S Segal, and G A Brooks
June 1983, Canadian journal of applied sport sciences. Journal canadien des sciences appliquees au sport,
S S Segal, and G A Brooks
June 2000, Journal of applied physiology (Bethesda, Md. : 1985),
S S Segal, and G A Brooks
December 1981, Journal of applied physiology: respiratory, environmental and exercise physiology,
S S Segal, and G A Brooks
August 1977, Journal of applied physiology: respiratory, environmental and exercise physiology,
Copied contents to your clipboard!