Mutator gene of Escherichia coli B. 1967

E C Siegel, and V Bryson

An azaserine-resistant derivative of Escherichia coli B/UV, AZA/R(1), was found to carry a mutator gene. This gene, designated mutS1, was mapped by means of conjugation and P1kc-mediated transduction. The mutS1 gene was cotransduced with argB at a frequency of 2.4%; the gene order in this region of the chromosome is thy argB mutS1. To determine whether a relationship commonly exists between azaserine resistance and the mutator property, 12 additional azaserine-resistant derivatives of B/UV were developed and tested for the mutator phenotype. None of the twelve was a mutator strain. The level of azaserine resistance was not increased over that of the recipient parent when mutS1 was transduced to an azaserine-susceptible strain. Reversion studies indicated that mutS1 induced adenosine-ribosylthymine to guanosine-cytidine and guanosine-cytidine to adenosine-ribosylthymine transitions. Because such mutational changes are suppressible with deoxynucleosides when induced by base analogues, an attempt was made to suppress the mutator activity of mutS1 by the addition of deoxyribonucleosides to the medium. No suppression was found. Recombinants were prepared containing mutS1 and the Treffers mutator gene of E. coli K-12. The effect of the mutator genes appears to be additive.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D013307 Streptomycin An antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by inhibiting the initiation and elongation processes during protein synthesis. Estreptomicina CEPA,Estreptomicina Clariana,Estreptomicina Normon,Strepto-Fatol,Strepto-Hefa,Streptomycin GrĂ¼nenthal,Streptomycin Sulfate,Streptomycin Sulfate (2:3) Salt,Streptomycin Sulphate,Streptomycine Panpharma,Strepto Fatol,Strepto Hefa
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

E C Siegel, and V Bryson
October 1969, Journal of bacteriology,
E C Siegel, and V Bryson
August 1970, Science (New York, N.Y.),
E C Siegel, and V Bryson
April 1973, Genetics,
E C Siegel, and V Bryson
December 1972, Genetics,
E C Siegel, and V Bryson
February 1969, Biochemical and biophysical research communications,
E C Siegel, and V Bryson
January 1999, Trends in microbiology,
E C Siegel, and V Bryson
March 1983, Indian journal of experimental biology,
E C Siegel, and V Bryson
May 1990, Journal of bacteriology,
E C Siegel, and V Bryson
September 1994, Journal of bacteriology,
Copied contents to your clipboard!