Intracellular protein breakdown in non-growing cells of Escherichia coli. 1967

N S Willetts

1. When Escherichia coli leu(-) was incubated at 35 degrees in a medium based on minimal medium, but with the omission of phosphate ions, or glucose, or NH(4) (+) ions and leucine, intracellular protein was degraded at a rate of about 5%/hr. in each case. If Mg(2+) ions were omitted, however, the rate of degradation was 2.9%/hr. 2. Under certain conditions of incubation, protein degradation was inhibited. The inhibitor was neither NH(4) (+) ions nor amino acids, and its properties were not those of a protein, but it might be an unstable species of RNA. 3. Although a large part of the cell protein was degraded at about 5%/hr. during starvation of NH(4) (+) ions and leucine, some proteins were lost at more rapid rates, whereas others were lost at lower rates or not at all. 4. In particular, beta-galactosidase activity was lost at about 8%/hr. during starvation of NH(4) (+) ions and leucine, whereas d-serine-deaminase and alkaline-phosphatase activities were stable. During starvation of Mg(2+) ions, all three enzyme activities were stable.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005696 Galactosidases A family of galactoside hydrolases that hydrolyze compounds with an O-galactosyl linkage. EC 3.2.1.-. Galactosidase

Related Publications

N S Willetts
December 1955, The Journal of biological chemistry,
N S Willetts
January 1971, International journal of radiation biology and related studies in physics, chemistry, and medicine,
N S Willetts
May 1972, The Journal of biological chemistry,
N S Willetts
March 2012, Microbiological research,
N S Willetts
October 1980, The Journal of biological chemistry,
Copied contents to your clipboard!