Ehrlich ascites tumor cell surface labeling and kinetics of glycocalyx release. 1979

T C Smith, and C Levinson

Ehrlich ascites tumor cells spontaneously release cell surface material (glycocalyx) into isotonic saline medium. Exposure of these cells to tritium-labeled 4,4'-diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid (3H2DIDS) at 4 degrees C leads to preferential labeling of the cell surface coat. We have combined studies of the kinetics of 3H2DIDS-label release, the effects of enzymatic treatment, and cell electrophoretic mobility to characterize the 3H2DIDS-labeled components of the cell surface. Approximately 73% of the cell-associated radioactivity is spontaneously released from the cells after 5 h at 23 degrees C. The kinetics of release is consistent with the first-order loss of two fractions; a slow (tau 1/2 = 360 min) component representing 33% of the radioactivity and a fast (tau 1/2 = 20 min) component representing 26%. The remaining 14% of the labile binding may reflect mechanically induced surface release. Trypsin (1 microgram/ml) also removes approximately 73% of the labeled material within 30 min and converts the kinetics of release to that of a single component (tau 1/2 = 5.5 min). The specific activity (SA) of material released by trypsin immediately after labeling is 83% of the SA of the material spontaneously lost in 1 h. However, trypsinization following a 2-h period of spontaneous release yields material of reduced (43%) SA. Neither 3H2DIDS labeling nor the initial spontaneous loss of labeled material alters cell electrophoretic mobility. However, extended spontaneous release is accompanied by a significant decrease in surface charge density. Trypsinization immediately following labeling or after spontaneous release (2 h) reduces mobility by 32%. We have tentatively identified the slowly released compartment as contributing to cell surface negativity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012856 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells. 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid, Disodium Salt,SITS,SITS Disodium Salt,4 Acetamido 4' isothiocyanatostilbene 2,2' disulfonic Acid,Disodium Salt, SITS

Related Publications

T C Smith, and C Levinson
January 1984, Acta histochemica. Supplementband,
T C Smith, and C Levinson
January 1978, Zeitschrift fur Krebsforschung und klinische Onkologie. Cancer research and clinical oncology,
T C Smith, and C Levinson
August 1985, Archives of biochemistry and biophysics,
T C Smith, and C Levinson
January 1989, Biology of the cell,
T C Smith, and C Levinson
January 1980, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
T C Smith, and C Levinson
May 1958, The Journal of laboratory and clinical medicine,
T C Smith, and C Levinson
July 1987, Arzneimittel-Forschung,
T C Smith, and C Levinson
January 1978, Journal of lipid research,
Copied contents to your clipboard!