| D008297 |
Male |
|
Males |
|
| D009388 |
Neostigmine |
A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. |
Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine |
|
| D011241 |
Prednisone |
A synthetic anti-inflammatory glucocorticoid derived from CORTISONE. It is biologically inert and converted to PREDNISOLONE in the liver. |
Dehydrocortisone,delta-Cortisone,Apo-Prednisone,Cortan,Cortancyl,Cutason,Dacortin,Decortin,Decortisyl,Deltasone,Encorton,Encortone,Enkortolon,Kortancyl,Liquid Pred,Meticorten,Orasone,Panafcort,Panasol,Predni Tablinen,Prednidib,Predniment,Prednison Acsis,Prednison Galen,Prednison Hexal,Pronisone,Rectodelt,Sone,Sterapred,Ultracorten,Winpred,Acsis, Prednison |
|
| D011950 |
Receptors, Cholinergic |
Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. |
ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive |
|
| D002038 |
Bungarotoxins |
Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. |
alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin |
|
| D003964 |
Diaphragm |
The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. |
Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms |
|
| D004347 |
Drug Interactions |
The action of a drug that may affect the activity, metabolism, or toxicity of another drug. |
Drug Interaction,Interaction, Drug,Interactions, Drug |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D051381 |
Rats |
The common name for the genus Rattus. |
Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus |
|