Dedifferentiated variants of a rat hepatoma: analysis by cell hybridization. 1979

J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss

Two independent dedifferentiated variants, H5 and FaoflC2, derived from the Reuber H35 hepatoma, produce trans-acting diffusible substances(s) that extinguish the expression of liver-specific proteins when hybridized with a well-differentiated cell line of the same origin (Fao and Fu5-5, respectively). H5 x Fao hybrids show total and stable extinction of four liver functions and clonal variability in the expression of three others. FaoflC2 x Fu5-5 hybrids are initially flat (like FaoflC2 cells), and die in glucose-free medium where survival requires expression of hepatic gluconeogenic enzymes, but then evolve to hepatoma-like and finally round morphology; these latter cells express all liver functions analyzed including the gluconeogenic enzymes. Two exceptional clones that remained flat long enough for complete analysis showed extinction of all hepatic functions not expressed by FaoflC2 cells. We conclude that this transitory extinction reflects the action and then loss of extinguishing factor(s) contributed by FaoflC2. When crossed with BW1-J mouse hepatoma cells. FaoflC2 causes stable extinction of mouse aldolase B. We propose that production of extinguishing factor(s) is the rule for dedifferentiated variants.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
November 1980, Cell,
J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
April 1982, Journal of cellular physiology,
J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
July 1993, Experimental cell research,
J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
December 1981, Cell,
J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
January 1974, Biochimie,
J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
November 1994, Molecular and cellular biology,
J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
August 1984, The Journal of cell biology,
J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
January 1996, Annales de genetique,
J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
October 1992, Biochemical and biophysical research communications,
J Deschatrette, and E E Moore, and M Dubois, and D Cassio, and M C Weiss
October 1983, Endocrinology,
Copied contents to your clipboard!