[Neuronal organization of the vestibulo-ocular reflex arc]. 1970

R G Baker, and N Mano, and H Shimazu

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D009802 Oculomotor Nerve The 3d cranial nerve. The oculomotor nerve sends motor fibers to the levator muscles of the eyelid and to the superior rectus, inferior rectus, and inferior oblique muscles of the eye. It also sends parasympathetic efferents (via the ciliary ganglion) to the muscles controlling pupillary constriction and accommodation. The motor fibers originate in the oculomotor nuclei of the midbrain. Cranial Nerve III,Third Cranial Nerve,Nerve III,Nervus Oculomotorius,Cranial Nerve IIIs,Cranial Nerve, Third,Cranial Nerves, Third,Nerve IIIs,Nerve, Oculomotor,Nerve, Third Cranial,Nerves, Oculomotor,Nerves, Third Cranial,Oculomotor Nerves,Oculomotorius, Nervus,Third Cranial Nerves
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014725 Vestibular Nerve The vestibular part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The vestibular nerve fibers arise from neurons of Scarpa's ganglion and project peripherally to vestibular hair cells and centrally to the VESTIBULAR NUCLEI of the BRAIN STEM. These fibers mediate the sense of balance and head position. Scarpa's Ganglion,Ganglion, Scarpa's,Nerve, Vestibular,Nerves, Vestibular,Scarpa Ganglion,Scarpas Ganglion,Vestibular Nerves
D014726 Vestibular Nuclei The four cellular masses in the floor of the fourth ventricle giving rise to a widely dispersed special sensory system. Included is the superior, medial, inferior, and LATERAL VESTIBULAR NUCLEUS. (From Dorland, 27th ed) Schwalbe Nucleus,Vestibular Nucleus, Medial,Schwalbe's Nucleus,Medial Vestibular Nucleus,Nuclei, Vestibular,Nucleus, Medial Vestibular,Nucleus, Schwalbe,Nucleus, Schwalbe's,Schwalbes Nucleus

Related Publications

R G Baker, and N Mano, and H Shimazu
January 1986, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
R G Baker, and N Mano, and H Shimazu
November 1950, Journal of neurophysiology,
R G Baker, and N Mano, and H Shimazu
January 1961, Journal de physiologie,
R G Baker, and N Mano, and H Shimazu
April 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
R G Baker, and N Mano, and H Shimazu
April 1979, Experimental brain research,
R G Baker, and N Mano, and H Shimazu
January 1979, Progress in brain research,
R G Baker, and N Mano, and H Shimazu
January 1979, Progress in brain research,
R G Baker, and N Mano, and H Shimazu
April 1976, The Journal of physiology,
R G Baker, and N Mano, and H Shimazu
January 1963, Biomedical sciences instrumentation,
R G Baker, and N Mano, and H Shimazu
January 1979, Progress in brain research,
Copied contents to your clipboard!