Conduction velocity in spinal descending pathways of baro- and chemoreceptor reflex. 1979

W Jänig, and P Szulczyk

Activity in the white rami T3 and L2 or 3 has been recorded and averaged with respect to excitation of the carotid sinus baroreceptor afferents produced by the pulsatile blood pressure (baroreceptor reflex) and with respect to brief trains of electrical stimuli exciting low threshold chemoreceptor afferents in the left carotid sinus nerve (chemoreceptor reflex). Experiments were performed on chloralose anaesthetized cats with both vago-depressor nerves cut. From the latency difference between the onset of the responses at the thoracic and their arrival at the lumbar level the spinal conduction velocity for the pathway of each reflex has been calculated. The baroreceptor reflex pathway has slower spinal conduction velocity 3.3 +/- 0.7 m/sec than the chemoreceptor pathway 5.5 +/- 0.9 m/sec. These results indicate that there are separate descending spinal pathways for the two types of reflexes.

UI MeSH Term Description Entries
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002346 Carotid Sinus The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure. Sinus, Carotid
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001339 Autonomic Fibers, Preganglionic NERVE FIBERS which project from the central nervous system to AUTONOMIC GANGLIA. In the sympathetic division most preganglionic fibers originate with neurons in the intermediolateral column of the SPINAL CORD, exit via ventral roots from upper thoracic through lower lumbar segments, and project to the paravertebral ganglia; there they either terminate in SYNAPSES or continue through the SPLANCHNIC NERVES to the prevertebral ganglia. In the parasympathetic division the fibers originate in neurons of the BRAIN STEM and sacral spinal cord. In both divisions the principal transmitter is ACETYLCHOLINE but peptide cotransmitters may also be released. Autonomic Fiber, Preganglionic,Fiber, Preganglionic Autonomic,Fibers, Preganglionic Autonomic,Preganglionic Autonomic Fiber,Preganglionic Autonomic Fibers
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

W Jänig, and P Szulczyk
March 1975, The American journal of physiology,
W Jänig, and P Szulczyk
January 1972, Advances in experimental medicine and biology,
W Jänig, and P Szulczyk
October 2012, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine,
W Jänig, and P Szulczyk
September 2022, Healthcare (Basel, Switzerland),
W Jänig, and P Szulczyk
January 1950, Cardiologia,
W Jänig, and P Szulczyk
June 1990, Journal of the autonomic nervous system,
W Jänig, and P Szulczyk
January 1977, Revue d'electroencephalographie et de neurophysiologie clinique,
W Jänig, and P Szulczyk
May 1975, The Journal of physiology,
W Jänig, and P Szulczyk
July 2006, Autonomic neuroscience : basic & clinical,
Copied contents to your clipboard!