The spectral sensitivity of single units in the nucleus rotundus of pigeon, Columba livia. 1971

A M Granda, and S Yazulla

Responses to diffuse monochromatic light were recorded from single units in the diencephalon of pigeon. Units were both excited and inhibited by light stimulation. Intensity-response functions based on latency measures to the first spike after stimulation were used to generate action spectra. One class of spectral sensitivity functions presumably from rods, showed peak sensitivities near 500 nm: these functions were unaffected by changing criterion values used to generate the functions. A second class of cone functions showed multiple peak sensitivities at 540 nm and 600-620 nm. These units shifted their peak sensitivities with a change in criterion values. Unit response types tended to be localized differentially in the nucleus rotundus. Excitatory units were located in the dorsal half of the nucleus, while inhibitory units were located in the ventral half, with a few exceptions. An attempt was made to integrate the present findings with previous behavioral, electrophysiological, photochemical, and anatomical data in the pigeon.

UI MeSH Term Description Entries
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A M Granda, and S Yazulla
September 1970, The Journal of comparative neurology,
A M Granda, and S Yazulla
January 1965, Vision research,
A M Granda, and S Yazulla
October 1996, The Journal of comparative neurology,
A M Granda, and S Yazulla
March 1990, The Journal of comparative neurology,
A M Granda, and S Yazulla
October 1979, Thrombosis and haemostasis,
A M Granda, and S Yazulla
August 1994, Tierarztliche Praxis,
Copied contents to your clipboard!