The fine structure of cockroach campaniform sensilla. 1971

D T Moran, and K M Chapman, and R A Ellis

Campaniform sensilla on cockroach legs provide a good model system for the study of mechanoreceptive sensory transduction. This paper describes the structure of campaniform sensilla on the cockroach tibia as revealed by light- and electron-microscopy. Campaniform sensilla are proprioceptive mechanoreceptors associated with the exoskeleton. The function of each sensillum centers around a single primary sense cell, a large bipolar neuron whose 40 micro-wide cell body is available for electrophysiological investigation with intracellular microelectrodes. Its axon travels to the central nervous system; its dendrite gives rise to a modified cilium which is associated with the cuticle. The tip of the 20 micro-long dendrite contains a basal body, from which arises a 9 + 0 connecting cilium. This cilium passes through a canal in the cuticle, and expands in diameter to become the sensory process, a membrane-limited bundle of 350-1000 parallel microtubules. The tip of the sensory process is firmly attached to a thin cap of exocuticle; mechanical depression of this cap, which probably occurs during walking movements, effectively stimulates the sensillum. The hypothesis is presented that the microtubules of the sensory process play an important role in mechanoelectric transduction in cockroach campaniform sensilla.

UI MeSH Term Description Entries
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

D T Moran, and K M Chapman, and R A Ellis
March 1999, Brain research,
D T Moran, and K M Chapman, and R A Ellis
April 1965, The Journal of experimental biology,
D T Moran, and K M Chapman, and R A Ellis
April 2000, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
D T Moran, and K M Chapman, and R A Ellis
January 1987, Histochemistry,
D T Moran, and K M Chapman, and R A Ellis
December 2001, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
D T Moran, and K M Chapman, and R A Ellis
January 1980, Cell and tissue research,
D T Moran, and K M Chapman, and R A Ellis
March 2017, Arthropod structure & development,
D T Moran, and K M Chapman, and R A Ellis
March 2021, The Journal of comparative neurology,
D T Moran, and K M Chapman, and R A Ellis
January 1969, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
Copied contents to your clipboard!