[Electrophysiologic relations in the lateral geniculate body]. 1977

G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera

Responses were evoked in the lateral geniculate body (L.G.B.) of "encéphale isolé" cats by single-shock stimulation of either the geniculate body or the optic tract of the other side. Responses to optic tract stimulation were modified following excitability changes in the contralateral L.G.B. due to topical application of strychnine and KCl. Laminar stimulation and recording in different layers (A, A1, and B) suggested the existence of a certain homotopic organization of L.G.B. interconnections. The activity evoked in the L.G.B. was found to be abolished by electrocoagulation of the posterior commissure and intermediate gray matter. These results point to the presence of a transthalamic pathway which might mediate L.G.B. activity to the contralateral visual cortex.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
January 1970, Journal de physiologie,
G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
December 1945, Brain : a journal of neurology,
G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
August 1953, Science (New York, N.Y.),
G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
May 1960, Electroencephalography and clinical neurophysiology,
G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
June 1960, Experimental neurology,
G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
May 1959, Journal of neurophysiology,
G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
May 1969, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
October 1941, Journal of anatomy,
G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
January 2014, Internal medicine (Tokyo, Japan),
G Amato, and G Gravante, and V La Grutta, and M T Salerno, and F Sorbera
March 1967, Journal of neurophysiology,
Copied contents to your clipboard!