How Gymnodinium breve red tide toxin(s) produces repetitive firing in squid axons. 1977

M Westerfield, and J W Moore, and Y S Kim, and G M Padilla

Partially purified toxin(s), GbTX, extracted from Gymnodinium breve red tide organisms elicits a spontaneous train of action potentials in the squid giant axon. The spikes have a shape similar to that in the normal seawater control except for an increase in the rate of recovery from the afterhyperpolarization. With this more rapid recovery, the membrane potential overshoots the resting potential and threshold, triggers another spike, and thus produces repetitive firing. Voltage-clamp studies revealed that the toxin has no effect on the normal sodium or potassium conductance changes produced by step depolarization. However, consistent with the faster recovery after an action potential, GbTX speeds recovery of the "shut-off" currents to their steady-state values after a depolarization. The most likely mechanism by which the toxin accelerates recovery after an action potential (leading to repetitive firing) is the induction of a small additional inward current which was found to be reduced by prehyperpolarization. This toxin-induced current which speeds recovery is blocked by tetrodotoxin and hence presumably flows through the sodium channel.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004141 Dinoflagellida Flagellate EUKARYOTES, found mainly in the oceans. They are characterized by the presence of transverse and longitudinal flagella which propel the organisms in a rotating manner through the water. Dinoflagellida were formerly members of the class Phytomastigophorea under the old five kingdom paradigm. Amphidinium,Dinoflagellata,Dinophyceae,Dinophycidae,Dinophyta,Dinophytes,Gambierdiscus toxicus,Gonyaulax,Gymnodinium,Peridinium,Pyrrhophyta,Pyrrophyta,Dinoflagellates
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D014118 Toxins, Biological Specific, characterizable, poisonous chemicals, often PROTEINS, with specific biological properties, including immunogenicity, produced by microbes, higher plants (PLANTS, TOXIC), or ANIMALS. Biological Toxins

Related Publications

M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
February 1973, Toxicon : official journal of the International Society on Toxinology,
M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
January 1971, Environmental letters,
M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
August 1976, Toxicon : official journal of the International Society on Toxinology,
M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
January 1973, Environmental letters,
M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
February 1986, Journal of the American Chemical Society,
M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
August 1974, Toxicon : official journal of the International Society on Toxinology,
M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
January 1985, Toxicon : official journal of the International Society on Toxinology,
M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
January 1958, Texas reports on biology and medicine,
M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
May 1982, The Journal of protozoology,
M Westerfield, and J W Moore, and Y S Kim, and G M Padilla
January 1970, The Journal of general physiology,
Copied contents to your clipboard!