| D007700 |
Kinetics |
The rate dynamics in chemical or physical systems. |
|
|
| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D008954 |
Models, Biological |
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. |
Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic |
|
| D011188 |
Potassium |
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE. |
|
|
| D004141 |
Dinoflagellida |
Flagellate EUKARYOTES, found mainly in the oceans. They are characterized by the presence of transverse and longitudinal flagella which propel the organisms in a rotating manner through the water. Dinoflagellida were formerly members of the class Phytomastigophorea under the old five kingdom paradigm. |
Amphidinium,Dinoflagellata,Dinophyceae,Dinophycidae,Dinophyta,Dinophytes,Gambierdiscus toxicus,Gonyaulax,Gymnodinium,Peridinium,Pyrrhophyta,Pyrrophyta,Dinoflagellates |
|
| D000200 |
Action Potentials |
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. |
Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D001369 |
Axons |
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. |
Axon |
|
| D012964 |
Sodium |
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. |
Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23 |
|
| D014118 |
Toxins, Biological |
Specific, characterizable, poisonous chemicals, often PROTEINS, with specific biological properties, including immunogenicity, produced by microbes, higher plants (PLANTS, TOXIC), or ANIMALS. |
Biological Toxins |
|