Effects of verapamil on excitation-contraction coupling in single crab muscle fibers. 1977

G Suarez-Kurtz, and A L Sorenson

The effects of verapamil and its optical isomers on the electrical and mechanical characteristics of single muscle fibers of Callinectes danae were studied. Verapamil (10-20 microng/ml) blocked the procaine- and TEA-induced spikes; the blockade was preceded by reduction in the rate of rise of the upstroke and increase in the duration of the action potentials. Inhibition of Ba-spikes required higher concentrations of verapamil (greater than 50 microng/ml). These concentrations reduced the amplitude of the normally occurring graded electrogenic membrane responses and reduced the rate of development of the current-induced tensions. With lower concentrations (10-30 microng/ml) verapamil enhanced the negative afterpotentials and the peak amplitude of the local contractions elicited by depolarizing current pulses, while the graded membrane responses were not markedly modified. Verapamil (1-100 microng/ml) did not affect the resting membrane potential but increased the effective membrane resistance. Determination of the cable characteristics by DC pulses indicated that verapamil (1-10 microng/ml) shortens the membrane length constant, increases the specific resistivity of the sarcoplasm and, in most cases, increases the membrane time constant. Verapamil (10 microng/ml) induced tension in these crab fibers. The contractions were potentiated in Na-deficient media, by increase in [Ca]0, and by membrane depolarization; "Ca-free" salines depressed, and procaine abolished these contractions. The results suggest that verapamil affects both Ca and K conductances and interferes with the Ca-sequestering mechanisms of these fibers. The (-)-isomer of verapamil was more effective than the (+)-isomer with respect to tension development, prolongation and subsequent blockade of procaine-spikes and enhancement of current-induced after-potentials and contractions.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011343 Procaine A local anesthetic of the ester type that has a slow onset and a short duration of action. It is mainly used for infiltration anesthesia, peripheral nerve block, and spinal block. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1016). Anuject,Geriocaine,Gerokit,Hewedolor-Procain,Lophakomp-Procain N,Novocain,Novocaine,Procain Braun,Procain Jenapharm,Procain Rödler,Procain Steigerwald,Procain curasan,Procaina Serra,Procaine Hydrochloride,Pröcaine chlorhydrate Lavoisier,Röwo Procain,procain-loges,Hydrochloride, Procaine
D003386 Brachyura An infraorder of chiefly marine, largely carnivorous CRUSTACEA, in the order DECAPODA, including the genera Cancer, Uca, and Callinectes. Blue Crab,Callinectes sapidus,Carcinus maenas,Crab, Blue,Crab, Common Shore,Crab, Green,Crabs, Short-Tailed,Crabs, True,Green Crab,Uca,Common Shore Crab,European Shore Crab,Blue Crabs,Brachyuras,Carcinus maena,Common Shore Crabs,Crab, European Shore,Crab, Short-Tailed,Crab, True,Crabs, Blue,Crabs, Common Shore,Crabs, Green,Crabs, Short Tailed,Green Crabs,Shore Crab, Common,Shore Crab, European,Shore Crabs, Common,Short-Tailed Crab,Short-Tailed Crabs,True Crab,True Crabs,Ucas,maenas, Carcinus
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D014700 Verapamil A calcium channel blocker that is a class IV anti-arrhythmia agent. Iproveratril,Calan,Cordilox,Dexverapamil,Falicard,Finoptin,Isoptin,Isoptine,Izoptin,Lekoptin,Verapamil Hydrochloride,Hydrochloride, Verapamil

Related Publications

G Suarez-Kurtz, and A L Sorenson
July 1985, Canadian journal of physiology and pharmacology,
G Suarez-Kurtz, and A L Sorenson
April 1978, The Journal of pharmacology and experimental therapeutics,
G Suarez-Kurtz, and A L Sorenson
December 1984, Pflugers Archiv : European journal of physiology,
G Suarez-Kurtz, and A L Sorenson
April 1987, Canadian journal of physiology and pharmacology,
G Suarez-Kurtz, and A L Sorenson
December 1987, Masui. The Japanese journal of anesthesiology,
G Suarez-Kurtz, and A L Sorenson
August 1989, Medicine and science in sports and exercise,
G Suarez-Kurtz, and A L Sorenson
October 2001, The Journal of general physiology,
G Suarez-Kurtz, and A L Sorenson
January 1977, Journal de physiologie,
G Suarez-Kurtz, and A L Sorenson
October 1994, The American journal of physiology,
G Suarez-Kurtz, and A L Sorenson
September 1976, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!