Binding of uranyl to phosphatidylcholine liposomes. Liposome aggregation effect on surface area. 1977

S E Schullery, and R H Miller

The binding of uranyl ion, UO2+2, to egg phosphatidylcholine liposomes was studied as a potential method for the determination of liposome surface areas. Unbound uranyl was determined spectrophotometrically as the Arsenazo III complex with centrifuge supernatant. There is an apparent positive cooperativity in uranyl binding at phosphatidylcholine concentrations above approx. 0.1 mM. The binding capacity per mol increases upon liposome dilution. The data are consistent with liposomes existing in a highly aggregated state. The binding constant in the limit of low concentration of bound uranyl was 9+/-3)-10(6) M-1 in 0.1 M NaCl, pH 4.1. At saturation about four uranyl ions are bound per 100 phosphatidylcholine molecules. Relative surface areas of different dispersions may be calculated from intercepts of extrapolated binding isotherms, and absolute surface areas may be calculated if a value for the uranyl-phosphatidylcholine stoichiometry is assumed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D004530 Egg Yolk Cytoplasm stored in an egg that contains nutritional reserves for the developing embryo. It is rich in polysaccharides, lipids, and proteins. Egg Yolks,Yolk, Egg,Yolks, Egg
D005260 Female Females
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014501 Uranium A radioactive element of the actinide series of metals. It has an atomic symbol U, atomic number 92, and atomic weight 238.03. U-235 is used as the fissionable fuel in nuclear weapons and as fuel in nuclear power reactors.

Related Publications

S E Schullery, and R H Miller
January 1995, Journal of drug targeting,
S E Schullery, and R H Miller
March 1986, Chemical & pharmaceutical bulletin,
S E Schullery, and R H Miller
February 2001, International journal of pharmaceutics,
S E Schullery, and R H Miller
January 1989, Journal of microencapsulation,
S E Schullery, and R H Miller
January 2009, Physical review. E, Statistical, nonlinear, and soft matter physics,
S E Schullery, and R H Miller
December 1983, Chemistry and physics of lipids,
S E Schullery, and R H Miller
April 1990, Chemistry and physics of lipids,
Copied contents to your clipboard!