Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. 1977

M J Latham, and M J Wolin

The anaerobic cellulolytic rumen bacterium Ruminococcus flavefaciens normally produces succinic acid as a major fermentation product together with acetic and formic acids, H2, and CO2. When grown on cellulose and in the presence of the methanogenic rumen bacterium Methanobacterium ruminantium, acetate was the major fermentation product; succinate was formed in small amounts; little formate was detected; H2 did not accumulate; and large amounts of CH4 were formed. M. ruminantium depends for growth on the reduction of CO2 to CH4 by H2, which it can obtain directly or by producing H2 and CO2 from formate. In mixed culture, the methanobacterium utilized the H2 and possibly the formate produced by the ruminococcus and in so doing stimulated the flow of electrons generated during glycolysis by the ruminococcus toward H2 formation and away from formation of succinate. This type of interaction may be of significance in determining the flow of cellulose carbon to the normal rumen fermentation products.

UI MeSH Term Description Entries
D008697 Methane The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
D010459 Peptococcaceae A family of bacteria found in the mouth and intestinal and respiratory tracts of man and other animals as well as in the human female urogenital tract. Its organisms are also found in soil and on cereal grains.
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002482 Cellulose A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations. Alphacel,Avicel,Heweten,Polyanhydroglucuronic Acid,Rayophane,Sulfite Cellulose,alpha-Cellulose,Acid, Polyanhydroglucuronic,alpha Cellulose
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M J Latham, and M J Wolin
April 1988, Applied and environmental microbiology,
M J Latham, and M J Wolin
January 1991, Applied and environmental microbiology,
M J Latham, and M J Wolin
November 1958, Journal of bacteriology,
M J Latham, and M J Wolin
November 1951, Journal of general microbiology,
M J Latham, and M J Wolin
November 1958, Journal of bacteriology,
M J Latham, and M J Wolin
November 1988, Applied and environmental microbiology,
M J Latham, and M J Wolin
September 1959, Archives of biochemistry and biophysics,
Copied contents to your clipboard!